To study the diagnostic problem of Wire-OR (W-O) interconnect fault of PCB (Printed Circuit Board), five modified boundary scan adaptive algorithms for interconnect test are put forward. These algorithms apply Glo...To study the diagnostic problem of Wire-OR (W-O) interconnect fault of PCB (Printed Circuit Board), five modified boundary scan adaptive algorithms for interconnect test are put forward. These algorithms apply Global-diagnosis sequence algorithm to replace the equal weight algorithm of primary test, and the test time is shortened without changing the fault diagnostic capability. The descriptions of five modified adaptive test algorithms are presented, and the capability comparison between the modified algorithm and the original algorithm is made to prove the validity of these algorithms.展开更多
Two new regularization algorithms for solving the first-kind Volterra integral equation, which describes the pressure-rate deconvolution problem in well test data interpretation, are developed in this paper. The main ...Two new regularization algorithms for solving the first-kind Volterra integral equation, which describes the pressure-rate deconvolution problem in well test data interpretation, are developed in this paper. The main features of the problem are the strong nonuniform scale of the solution and large errors (up to 15%) in the input data. In both algorithms, the solution is represented as decomposition on special basic functions, which satisfy given a priori information on solution, and this idea allow us significantly to improve the quality of approximate solution and simplify solving the minimization problem. The theoretical details of the algorithms, as well as the results of numerical experiments for proving robustness of the algorithms, are presented.展开更多
In this paper, we conduct research on the computer network protocol test model based on genetic and random walk algorithm.Network protocol is the abstract concept, is important in the process of the development of net...In this paper, we conduct research on the computer network protocol test model based on genetic and random walk algorithm.Network protocol is the abstract concept, is important in the process of the development of network system. Fully understand and grasp of thenetwork protocols for managers is there is a big diffi cult. Network covert channel is the evaluation of intrusion detection system and fi rewallsecurity performance of an important means, the paper will start from the angle of the attacker, the fl aws of the research, and use this kind ofdefect to realize network covert channel, the random walk algorithm will be feasible for dealing with this issue. For achieving this, we integratethe genetic and random walk algorithm for systematic optimization.展开更多
The most prominent causes of loss of vision in individuals over 50 years include age-related macular degeneration(AMD),glaucoma,and diabetic retinopathy(DR).While it is important to screen for these diseases effective...The most prominent causes of loss of vision in individuals over 50 years include age-related macular degeneration(AMD),glaucoma,and diabetic retinopathy(DR).While it is important to screen for these diseases effectively,current eye care is not properly doing so for much of the population,resulting in unfortunate visual disability and high costs for patients.Innovative functional testing can be unified with other screening methods for a more robust and safer screening and prediction of disease.The goal in the creation of functional testing modalities is to develop highly sensitive screening tests that are easy to use,accessible to all users,and inexpensive.The tests herein are deployed on an iPad with easily understood and intuitive instructions for rapid,streamlined,and automatic administration.These testing modalities could become highly sensitive screenings for early detection of potentially blinding diseases.The applications from our collaborators at AMA Optics include a cone photostress recovery test for detection of AMD and diabetic macular edema(DME),brightness balance perception for optic nerve dysfunction and especially glaucoma,color vision testing which is a broad screening tool,and visual acuity test.Machine learning with the combined structural and functional data will optimize identification of disease and prediction of outcomes.Here,we review and assess various tests of visual function that are easily administered on a tablet for screening in primary care.These user-friendly and simple screening tests allow patients to be identified in the early stages of disease for referral to specialists,proper assessment and treatment.展开更多
The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuse...The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.展开更多
To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership functi...To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership function. For making the modified FALCON learning more efficient and stable, a simulated annealing (SA) learning coefficient is introduced into learning algorithm. At first, the basic concepts and main advantages of FALCON were briefly reviewed. Subsequently, the topological structure and nodes operation were illustrated; the gradient-descent learning algorithm with SA learning coefficient was derived; and the distinctions between the archetype and the modification were analyzed. Eventually, the significance and worthiness of the modified FALCON were validated by its application to probability prediction of anode effect in aluminium electrolysis cells.展开更多
Traditional distribution network planning relies on the professional knowledge of planners,especially when analyzing the correlations between the problems existing in the network and the crucial influencing factors.Th...Traditional distribution network planning relies on the professional knowledge of planners,especially when analyzing the correlations between the problems existing in the network and the crucial influencing factors.The inherent laws reflected by the historical data of the distribution network are ignored,which affects the objectivity of the planning scheme.In this study,to improve the efficiency and accuracy of distribution network planning,the characteristics of distribution network data were extracted using a data-mining technique,and correlation knowledge of existing problems in the network was obtained.A data-mining model based on correlation rules was established.The inputs of the model were the electrical characteristic indices screened using the gray correlation method.The Apriori algorithm was used to extract correlation knowledge from the operational data of the distribution network and obtain strong correlation rules.Degree of promotion and chi-square tests were used to verify the rationality of the strong correlation rules of the model output.In this study,the correlation relationship between heavy load or overload problems of distribution network feeders in different regions and related characteristic indices was determined,and the confidence of the correlation rules was obtained.These results can provide an effective basis for the formulation of a distribution network planning scheme.展开更多
To eliminate the node traction coupling during wind turbine blade full-scale static testing,a model free adaptive control algorithm is presented based on fuzzy control performance function compensation. Based on the u...To eliminate the node traction coupling during wind turbine blade full-scale static testing,a model free adaptive control algorithm is presented based on fuzzy control performance function compensation. Based on the universal model theory,the fuzzy model free adaptive control( FMFAC) algorithm is designed by configuring the spot static testing experiences as compensation function F( ·). Then the algorithm implementation process is provided and its quick convergence is proved. Using software to establish static load coupling model of multi-nodes,simulate and verify the validity of FMFAC algorithm,which is applied to wind turbines blade full-scale static testing. The results show that the adaptive decoupling ability of FMFAC is better. The traction of four load points can stay steady and change coordinately. Process error is not over ± 6 k N. The error rate is lower than 1% in special phase.This algorithm effectively eliminates the traction coupling of the static testing process,and makes wind turbine blade testing steadily.展开更多
This white paper explores three popular development methodologies for network softwarization: DevOps, NetOps, and Verification. The paper compares and contrasts the strengths and weaknesses of each approach and provid...This white paper explores three popular development methodologies for network softwarization: DevOps, NetOps, and Verification. The paper compares and contrasts the strengths and weaknesses of each approach and provides recommendations for organizations looking to adopt network softwarization.展开更多
Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Fi...Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential.展开更多
文摘To study the diagnostic problem of Wire-OR (W-O) interconnect fault of PCB (Printed Circuit Board), five modified boundary scan adaptive algorithms for interconnect test are put forward. These algorithms apply Global-diagnosis sequence algorithm to replace the equal weight algorithm of primary test, and the test time is shortened without changing the fault diagnostic capability. The descriptions of five modified adaptive test algorithms are presented, and the capability comparison between the modified algorithm and the original algorithm is made to prove the validity of these algorithms.
文摘Two new regularization algorithms for solving the first-kind Volterra integral equation, which describes the pressure-rate deconvolution problem in well test data interpretation, are developed in this paper. The main features of the problem are the strong nonuniform scale of the solution and large errors (up to 15%) in the input data. In both algorithms, the solution is represented as decomposition on special basic functions, which satisfy given a priori information on solution, and this idea allow us significantly to improve the quality of approximate solution and simplify solving the minimization problem. The theoretical details of the algorithms, as well as the results of numerical experiments for proving robustness of the algorithms, are presented.
文摘In this paper, we conduct research on the computer network protocol test model based on genetic and random walk algorithm.Network protocol is the abstract concept, is important in the process of the development of network system. Fully understand and grasp of thenetwork protocols for managers is there is a big diffi cult. Network covert channel is the evaluation of intrusion detection system and fi rewallsecurity performance of an important means, the paper will start from the angle of the attacker, the fl aws of the research, and use this kind ofdefect to realize network covert channel, the random walk algorithm will be feasible for dealing with this issue. For achieving this, we integratethe genetic and random walk algorithm for systematic optimization.
基金supported in part by a Challenge Grant from Research to Prevent Blindness,NY.
文摘The most prominent causes of loss of vision in individuals over 50 years include age-related macular degeneration(AMD),glaucoma,and diabetic retinopathy(DR).While it is important to screen for these diseases effectively,current eye care is not properly doing so for much of the population,resulting in unfortunate visual disability and high costs for patients.Innovative functional testing can be unified with other screening methods for a more robust and safer screening and prediction of disease.The goal in the creation of functional testing modalities is to develop highly sensitive screening tests that are easy to use,accessible to all users,and inexpensive.The tests herein are deployed on an iPad with easily understood and intuitive instructions for rapid,streamlined,and automatic administration.These testing modalities could become highly sensitive screenings for early detection of potentially blinding diseases.The applications from our collaborators at AMA Optics include a cone photostress recovery test for detection of AMD and diabetic macular edema(DME),brightness balance perception for optic nerve dysfunction and especially glaucoma,color vision testing which is a broad screening tool,and visual acuity test.Machine learning with the combined structural and functional data will optimize identification of disease and prediction of outcomes.Here,we review and assess various tests of visual function that are easily administered on a tablet for screening in primary care.These user-friendly and simple screening tests allow patients to be identified in the early stages of disease for referral to specialists,proper assessment and treatment.
基金supported by the National Natural Science Foundation of China(51175502)
文摘The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.
文摘To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership function. For making the modified FALCON learning more efficient and stable, a simulated annealing (SA) learning coefficient is introduced into learning algorithm. At first, the basic concepts and main advantages of FALCON were briefly reviewed. Subsequently, the topological structure and nodes operation were illustrated; the gradient-descent learning algorithm with SA learning coefficient was derived; and the distinctions between the archetype and the modification were analyzed. Eventually, the significance and worthiness of the modified FALCON were validated by its application to probability prediction of anode effect in aluminium electrolysis cells.
基金supported by the Science and Technology Project of China Southern Power Grid(GZHKJXM20210043-080041KK52210002).
文摘Traditional distribution network planning relies on the professional knowledge of planners,especially when analyzing the correlations between the problems existing in the network and the crucial influencing factors.The inherent laws reflected by the historical data of the distribution network are ignored,which affects the objectivity of the planning scheme.In this study,to improve the efficiency and accuracy of distribution network planning,the characteristics of distribution network data were extracted using a data-mining technique,and correlation knowledge of existing problems in the network was obtained.A data-mining model based on correlation rules was established.The inputs of the model were the electrical characteristic indices screened using the gray correlation method.The Apriori algorithm was used to extract correlation knowledge from the operational data of the distribution network and obtain strong correlation rules.Degree of promotion and chi-square tests were used to verify the rationality of the strong correlation rules of the model output.In this study,the correlation relationship between heavy load or overload problems of distribution network feeders in different regions and related characteristic indices was determined,and the confidence of the correlation rules was obtained.These results can provide an effective basis for the formulation of a distribution network planning scheme.
基金National Natural Science Foundation of China(No.51567018)
文摘To eliminate the node traction coupling during wind turbine blade full-scale static testing,a model free adaptive control algorithm is presented based on fuzzy control performance function compensation. Based on the universal model theory,the fuzzy model free adaptive control( FMFAC) algorithm is designed by configuring the spot static testing experiences as compensation function F( ·). Then the algorithm implementation process is provided and its quick convergence is proved. Using software to establish static load coupling model of multi-nodes,simulate and verify the validity of FMFAC algorithm,which is applied to wind turbines blade full-scale static testing. The results show that the adaptive decoupling ability of FMFAC is better. The traction of four load points can stay steady and change coordinately. Process error is not over ± 6 k N. The error rate is lower than 1% in special phase.This algorithm effectively eliminates the traction coupling of the static testing process,and makes wind turbine blade testing steadily.
文摘This white paper explores three popular development methodologies for network softwarization: DevOps, NetOps, and Verification. The paper compares and contrasts the strengths and weaknesses of each approach and provides recommendations for organizations looking to adopt network softwarization.
基金supported by National Natural Science Foundation of China(71904006)Henan Province Key R&D Special Project(231111322200)+1 种基金the Science and Technology Research Plan of Henan Province(232102320043,232102320232,232102320046)the Natural Science Foundation of Henan(232300420317,232300420314).
文摘Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential.