In operation,risk arising from power transformer faults is of much uncertainty and complicacy.To timely and objectively control the risks,a transformer risk assessment method based on fuzzy analytic hierarchy process(...In operation,risk arising from power transformer faults is of much uncertainty and complicacy.To timely and objectively control the risks,a transformer risk assessment method based on fuzzy analytic hierarchy process(FAHP) and artificial neural network(ANN) from the perspective of accuracy and quickness is proposed.An analytic hierarchy process model for the transformer risk assessment is built by analysis of the risk factors affecting the transformer risk level and the weight relation of each risk factor in transformer risk calculation is analyzed by application of fuzzy consistency judgment matrix;with utilization of adaptive ability and nonlinear mapping ability of the ANN,the risk factors with large weights are used as input of neutral network,and thus intelligent quantitative assessment of transformer risk is realized.The simulation result shows that the proposed method increases the speed and accuracy of the risk assessment and can provide feasible decision basis for the transformer risk management and maintenance decisions.展开更多
In order to solve the problem that determining decision factors weights is of subjectivity in heterogeneous wireless network selection algorithm, a network selection algorithm based on extension theory and fuzzy analy...In order to solve the problem that determining decision factors weights is of subjectivity in heterogeneous wireless network selection algorithm, a network selection algorithm based on extension theory and fuzzy analytic hierarchy process (FAHP) is proposed in this paper. In addition, user and operator codetermine the optimal network using the proposed algorithm, which can give consideration to user and operator benefits. The fuzzy judgment matrix is coustructed by membership degree of decision factors which is calculated according to extension theory. The comprehensive weight of each decision factor is obtained using FAHP. Finally, the optimal network is selected through total property value ranldng of each candidate network under user preference and operator preference. The simulation results show that the proposed algorithm can select the optimal network efficiently and accurately, satisfy user preference, and implement load balance between networks.展开更多
The employment of natural fibres in fused deposition modeling has raised much attention from researchers in finding a suitable formulation for the natural fibre composite filaments.Moreover,selection of suitable natur...The employment of natural fibres in fused deposition modeling has raised much attention from researchers in finding a suitable formulation for the natural fibre composite filaments.Moreover,selection of suitable natural fibres for fused deposition modeling should be performed before the development of the composites.It could not be performed without identifying selection criteria that comprehend both materials and fused deposition modeling process requirements.Therefore,in this study,integration of the Analytic Hierarchy Process(AHP)/Analytic Network Process(ANP)has been introduced in selecting the natural fibres based in different clusters of selection concurrently.The selection process has been performed based on the interdependency among the selection criteria.Pairwise comparison matrices are constructed based on AHP’s hierarchical model and super matrices are constructed based on the ANP’s network model.As a result,flax fibre has ranked at the top of the selection by scored 19.5%from the overall evaluation.Flax fibre has excellent material properties and been found in various natural fibre composite applications.Further investigation is needed to study the compatibility of this fibre to be reinforced with a thermoplastic polymer matrix to develop a resultant natural fibre composite filament for fused deposition modeling.展开更多
Underwater multi-target tracking logic and decision (UMTLD) has difficulty resolving multi-target tracking problems for underwater vehicles. Present methods assume factors in UMTLD are uncorrelated, when these are a...Underwater multi-target tracking logic and decision (UMTLD) has difficulty resolving multi-target tracking problems for underwater vehicles. Present methods assume factors in UMTLD are uncorrelated, when these are actually in a complex, interdependent relationship. To provide this, an index set of multi-target tracking decision characteristics and an analytic network process (ANP) model of the UMTLD method was -established. This method brings the index set of multi-target tracking decision into the ANP model, and the optimization multitarket tracking decision is achieved via computation of the resulting supermatrix. The rationality and robustness of decision results increase in simulations by 13% and 47% respectively with analytic hierarchy process (AHP). These results indicate that the ANP method should be the preferred method when UMTLD factors are interdependent.展开更多
The turn-key construction project is implemented in Taiwan not by a single company but by a make-shift group of several companies. Hence,problems to coordinate the professional construction management (PCM) and the su...The turn-key construction project is implemented in Taiwan not by a single company but by a make-shift group of several companies. Hence,problems to coordinate the professional construction management (PCM) and the supervising architectural company often occur for the lack of long-term experience to work together. The various factors that affect the implementation of turn-key projects currently practiced in Taiwan are analyzed using the analytic network process (ANP). The objective is to study how the twelve key factors in the four layers of "Role assignment","Signing contract","Operational procedures" and "Losing capital investment" affect the progress of implementing the turn-key project in Taiwan. The results reveal that "Delay in payment" has the most negative influence with 15.62% weighing factor; "Latent risk" comes next with 11.14% weighing factor,and "Responsibility of construction company for project quality" is the third with 10.79% weighing factor.展开更多
The aim of this paper is to select the best location for the construction of a dry port in Niger which is a land locked country (LLC). Niger is located in the Sahel and has a land area of 1,267,000 square kilometers [...The aim of this paper is to select the best location for the construction of a dry port in Niger which is a land locked country (LLC). Niger is located in the Sahel and has a land area of 1,267,000 square kilometers [1], with the closest port being port of Cotonou in Benin. The transport corridor from Niamey to Cotonou is approximately 1036 km long [2]. It is estimated that this corridor carries about 40 percent of Niger’s overseas trade traffic [3]. In this work, the Analytic Network Process (ANP) model is used to determine the optimal location of the dry port, among three major cities: Niamey (capital city), Dosso and Gaya. From the application of this selection model, Dosso was selected as the best location for the location of the dry port, while Gaya and Niamey were placed second and third respectively. The results obtained in this work strongly confirm the decision of the government of Niger to construct a dry port in Dosso, a project that commenced in 2010 and is still in progress.展开更多
This is the first part of an introduction to multicriteria decision making using the Analytic Hierarchy Process (AHP) and its generalization, the Analytic Network Process (ANP). The discussion involves individual and ...This is the first part of an introduction to multicriteria decision making using the Analytic Hierarchy Process (AHP) and its generalization, the Analytic Network Process (ANP). The discussion involves individual and group decisions both with the independence of the criteria from the alternatives as in the AHP and also with dependence and feedback in the entire decision structure as in the ANP. This part explains the Analytic Hierarchy Process, with examples, and presents in some detail the mathematical foundations. An exposition of the Analytic Network Process and its applications will appear in later issues of this journal.展开更多
Wireless sensor networks(WSNs)are characterized by heterogeneous traffic types(audio,video,data)and diverse application traffic requirements.This paper introduces three traffic classes following the defined model of h...Wireless sensor networks(WSNs)are characterized by heterogeneous traffic types(audio,video,data)and diverse application traffic requirements.This paper introduces three traffic classes following the defined model of heterogeneous traffic differentiation in WSNs.The requirements for each class regarding sensitivity to QoS(Quality of Service)parameters,such as loss,delay,and jitter,are described.These classes encompass real-time and delay-tolerant traffic.Given that QoS evaluation is a multi-criteria decision-making problem,we employed the AHP(Analytical Hierarchy Process)method for multi-criteria optimization.As a result of this approach,we derived weight values for different traffic classes based on key QoS factors and requirements.These weights are assigned to individual traffic classes to determine transmission priority.This study provides a thorough comparative analysis of the proposed model against existing methods,demonstrating its superior performance across various traffic scenarios and its implications for future WSN applications.The results highlight the model’s adaptability and robustness in optimizing network resources under varying conditions,offering insights into practical deployments in real-world scenarios.Additionally,the paper includes an analysis of energy consumption,underscoring the trade-offs between QoS performance and energy efficiency.This study presents the development of a differentiated services model for heterogeneous traffic in wireless sensor networks,considering the appropriate QoS framework supported by experimental analyses.展开更多
Accurate prediction of the heat load is the basic premise of intelligent regulation of the heating system,which helps to realize effective management of heating,ventilation,air conditioning system.For the problem that...Accurate prediction of the heat load is the basic premise of intelligent regulation of the heating system,which helps to realize effective management of heating,ventilation,air conditioning system.For the problem that the weight of each influencing factor is not taken into account in the current heat load prediction and is not highly targeted,this article deeply explores the influence of different factors on the room heat load,and we propose a method to calculate room heat load prediction based on the combination of analytic hierarchy process(AHP)and back-propagation(BP)neural network.Firstly,eight environmental factors affecting the heat load are selected as prediction inputs through parametric analysis,and then the weights of each input are determined by AHP and normalize the prediction data by combining expert opinions,and finally do one-to-one training the quantified score and the room heat load to predict the future heat load by BP neural network.The simulation tests show that the mean absolute relative error(MARE)of the proposed prediction method is 5.40%.This article also verifies the influence of different expert opinions on the stability of the model.The results show that the proposed method can guarantee higher prediction accuracy and stability.展开更多
基金Project(50977003) supported by the National Natural Science Foundation of China
文摘In operation,risk arising from power transformer faults is of much uncertainty and complicacy.To timely and objectively control the risks,a transformer risk assessment method based on fuzzy analytic hierarchy process(FAHP) and artificial neural network(ANN) from the perspective of accuracy and quickness is proposed.An analytic hierarchy process model for the transformer risk assessment is built by analysis of the risk factors affecting the transformer risk level and the weight relation of each risk factor in transformer risk calculation is analyzed by application of fuzzy consistency judgment matrix;with utilization of adaptive ability and nonlinear mapping ability of the ANN,the risk factors with large weights are used as input of neutral network,and thus intelligent quantitative assessment of transformer risk is realized.The simulation result shows that the proposed method increases the speed and accuracy of the risk assessment and can provide feasible decision basis for the transformer risk management and maintenance decisions.
文摘In order to solve the problem that determining decision factors weights is of subjectivity in heterogeneous wireless network selection algorithm, a network selection algorithm based on extension theory and fuzzy analytic hierarchy process (FAHP) is proposed in this paper. In addition, user and operator codetermine the optimal network using the proposed algorithm, which can give consideration to user and operator benefits. The fuzzy judgment matrix is coustructed by membership degree of decision factors which is calculated according to extension theory. The comprehensive weight of each decision factor is obtained using FAHP. Finally, the optimal network is selected through total property value ranldng of each candidate network under user preference and operator preference. The simulation results show that the proposed algorithm can select the optimal network efficiently and accurately, satisfy user preference, and implement load balance between networks.
基金Mastura M.T.received financial support from the Ministry of Higher Education Malaysia(https://www.mohe.gov.my/en/services/research/mygrants)Universiti Teknikal Malaysia Melaka through the Fundamental Research Grant Scheme(FRGS/1/2020/FTKMP-CARE/F00456).
文摘The employment of natural fibres in fused deposition modeling has raised much attention from researchers in finding a suitable formulation for the natural fibre composite filaments.Moreover,selection of suitable natural fibres for fused deposition modeling should be performed before the development of the composites.It could not be performed without identifying selection criteria that comprehend both materials and fused deposition modeling process requirements.Therefore,in this study,integration of the Analytic Hierarchy Process(AHP)/Analytic Network Process(ANP)has been introduced in selecting the natural fibres based in different clusters of selection concurrently.The selection process has been performed based on the interdependency among the selection criteria.Pairwise comparison matrices are constructed based on AHP’s hierarchical model and super matrices are constructed based on the ANP’s network model.As a result,flax fibre has ranked at the top of the selection by scored 19.5%from the overall evaluation.Flax fibre has excellent material properties and been found in various natural fibre composite applications.Further investigation is needed to study the compatibility of this fibre to be reinforced with a thermoplastic polymer matrix to develop a resultant natural fibre composite filament for fused deposition modeling.
基金Supported by the State Key Laboratory Foundation under Grant No.9140C2304080607the Aviation Science Foundation under Grant No.05F53027
文摘Underwater multi-target tracking logic and decision (UMTLD) has difficulty resolving multi-target tracking problems for underwater vehicles. Present methods assume factors in UMTLD are uncorrelated, when these are actually in a complex, interdependent relationship. To provide this, an index set of multi-target tracking decision characteristics and an analytic network process (ANP) model of the UMTLD method was -established. This method brings the index set of multi-target tracking decision into the ANP model, and the optimization multitarket tracking decision is achieved via computation of the resulting supermatrix. The rationality and robustness of decision results increase in simulations by 13% and 47% respectively with analytic hierarchy process (AHP). These results indicate that the ANP method should be the preferred method when UMTLD factors are interdependent.
文摘The turn-key construction project is implemented in Taiwan not by a single company but by a make-shift group of several companies. Hence,problems to coordinate the professional construction management (PCM) and the supervising architectural company often occur for the lack of long-term experience to work together. The various factors that affect the implementation of turn-key projects currently practiced in Taiwan are analyzed using the analytic network process (ANP). The objective is to study how the twelve key factors in the four layers of "Role assignment","Signing contract","Operational procedures" and "Losing capital investment" affect the progress of implementing the turn-key project in Taiwan. The results reveal that "Delay in payment" has the most negative influence with 15.62% weighing factor; "Latent risk" comes next with 11.14% weighing factor,and "Responsibility of construction company for project quality" is the third with 10.79% weighing factor.
文摘The aim of this paper is to select the best location for the construction of a dry port in Niger which is a land locked country (LLC). Niger is located in the Sahel and has a land area of 1,267,000 square kilometers [1], with the closest port being port of Cotonou in Benin. The transport corridor from Niamey to Cotonou is approximately 1036 km long [2]. It is estimated that this corridor carries about 40 percent of Niger’s overseas trade traffic [3]. In this work, the Analytic Network Process (ANP) model is used to determine the optimal location of the dry port, among three major cities: Niamey (capital city), Dosso and Gaya. From the application of this selection model, Dosso was selected as the best location for the location of the dry port, while Gaya and Niamey were placed second and third respectively. The results obtained in this work strongly confirm the decision of the government of Niger to construct a dry port in Dosso, a project that commenced in 2010 and is still in progress.
文摘This is the first part of an introduction to multicriteria decision making using the Analytic Hierarchy Process (AHP) and its generalization, the Analytic Network Process (ANP). The discussion involves individual and group decisions both with the independence of the criteria from the alternatives as in the AHP and also with dependence and feedback in the entire decision structure as in the ANP. This part explains the Analytic Hierarchy Process, with examples, and presents in some detail the mathematical foundations. An exposition of the Analytic Network Process and its applications will appear in later issues of this journal.
文摘Wireless sensor networks(WSNs)are characterized by heterogeneous traffic types(audio,video,data)and diverse application traffic requirements.This paper introduces three traffic classes following the defined model of heterogeneous traffic differentiation in WSNs.The requirements for each class regarding sensitivity to QoS(Quality of Service)parameters,such as loss,delay,and jitter,are described.These classes encompass real-time and delay-tolerant traffic.Given that QoS evaluation is a multi-criteria decision-making problem,we employed the AHP(Analytical Hierarchy Process)method for multi-criteria optimization.As a result of this approach,we derived weight values for different traffic classes based on key QoS factors and requirements.These weights are assigned to individual traffic classes to determine transmission priority.This study provides a thorough comparative analysis of the proposed model against existing methods,demonstrating its superior performance across various traffic scenarios and its implications for future WSN applications.The results highlight the model’s adaptability and robustness in optimizing network resources under varying conditions,offering insights into practical deployments in real-world scenarios.Additionally,the paper includes an analysis of energy consumption,underscoring the trade-offs between QoS performance and energy efficiency.This study presents the development of a differentiated services model for heterogeneous traffic in wireless sensor networks,considering the appropriate QoS framework supported by experimental analyses.
基金supported by the Natural Science Foundation of China(No.61765012)the Natural Science Foundation of Inner Mongolia Autonomous Region(No.2021LHBS05005)+4 种基金the Science and Technology Research Project of Inner Mongolia Autonomous Region Higher Education(No.2021SHZR0620)the Inner Mongolia Autonomous Region 2017 Science and Technology Innovation Guidance Award Funding Projects(No.2017CXYD-2)the Natural Science Foundation of Inner Mongolia Autonomous Region(No.2019MS05008).The funders had no role in the design of the studyin the collection,analyses,or interpretation of datain the writing of the manuscript,or in the decision to publish the results.
文摘Accurate prediction of the heat load is the basic premise of intelligent regulation of the heating system,which helps to realize effective management of heating,ventilation,air conditioning system.For the problem that the weight of each influencing factor is not taken into account in the current heat load prediction and is not highly targeted,this article deeply explores the influence of different factors on the room heat load,and we propose a method to calculate room heat load prediction based on the combination of analytic hierarchy process(AHP)and back-propagation(BP)neural network.Firstly,eight environmental factors affecting the heat load are selected as prediction inputs through parametric analysis,and then the weights of each input are determined by AHP and normalize the prediction data by combining expert opinions,and finally do one-to-one training the quantified score and the room heat load to predict the future heat load by BP neural network.The simulation tests show that the mean absolute relative error(MARE)of the proposed prediction method is 5.40%.This article also verifies the influence of different expert opinions on the stability of the model.The results show that the proposed method can guarantee higher prediction accuracy and stability.