针对认知异构蜂窝网络的上行资源分配问题,提出了基于带宽和功率约束的资源分配算法,并使用改进的群智能算法求解.根据认知无线电技术特性推导出认知家庭用户的带宽和功率分配取值范围,在满足用户服务质量(Quality of Services,QoS)的...针对认知异构蜂窝网络的上行资源分配问题,提出了基于带宽和功率约束的资源分配算法,并使用改进的群智能算法求解.根据认知无线电技术特性推导出认知家庭用户的带宽和功率分配取值范围,在满足用户服务质量(Quality of Services,QoS)的前提下将更多的资源分配给其他用户,以提升网络中用户的传输需求和缓解网络上行接入负载的压力.针对樽海鞘群算法存在收敛精度低、收敛慢等缺陷,将疯狂算子和动态精英学习因子分别引入领导者和跟随者中,以提升算法寻优效率和寻优精度.将改进的樽海鞘群算法求解基于带宽和功率约束的资源分配算法.仿真实验表明,引入带宽和功率约束的资源分配算法能有效提升网络性能,且在保证用户QoS条件下,能有效提升系统效益和用户接入公平性.展开更多
文摘针对认知异构蜂窝网络的上行资源分配问题,提出了基于带宽和功率约束的资源分配算法,并使用改进的群智能算法求解.根据认知无线电技术特性推导出认知家庭用户的带宽和功率分配取值范围,在满足用户服务质量(Quality of Services,QoS)的前提下将更多的资源分配给其他用户,以提升网络中用户的传输需求和缓解网络上行接入负载的压力.针对樽海鞘群算法存在收敛精度低、收敛慢等缺陷,将疯狂算子和动态精英学习因子分别引入领导者和跟随者中,以提升算法寻优效率和寻优精度.将改进的樽海鞘群算法求解基于带宽和功率约束的资源分配算法.仿真实验表明,引入带宽和功率约束的资源分配算法能有效提升网络性能,且在保证用户QoS条件下,能有效提升系统效益和用户接入公平性.