期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Community Detection in Disease-Gene Network Based on Principal Component Analysis 被引量:2
1
作者 Wei Liu Ling Chen 《Tsinghua Science and Technology》 SCIE EI CAS 2013年第5期454-461,共8页
The identification of communities is imperative in the understanding of network structures and functions.Using community detection algorithms in biological networks, the community structure of biological networks can ... The identification of communities is imperative in the understanding of network structures and functions.Using community detection algorithms in biological networks, the community structure of biological networks can be determined, which is helpful in analyzing the topological structures and predicting the behaviors of biological networks. In this paper, we analyze the diseasome network using a new method called disease-gene network detecting algorithm based on principal component analysis, which can be used to investigate the connection between nodes within the same group. Experimental results on real-world networks have demonstrated that our algorithm is more efficient in detecting community structures when compared with other well-known results. 展开更多
关键词 disease-gene network principal component analysis community detection
原文传递
SPEECH EMOTION RECOGNITION USING MODIFIED QUADRATIC DISCRIMINATION FUNCTION 被引量:9
2
作者 Zhao Yan Zhao Li Zou Cairong Yu Yinhua 《Journal of Electronics(China)》 2008年第6期840-844,共5页
Quadratic Discrimination Function (QDF) is commonly used in speech emotion recognition, which proceeds on the premise that the input data is normal distribution. In this paper, we propose a transformation to normali... Quadratic Discrimination Function (QDF) is commonly used in speech emotion recognition, which proceeds on the premise that the input data is normal distribution. In this paper, we propose a transformation to normalize the emotional features, emotion recognition. Features based on prosody then derivate a Modified QDF (MQDF) to speech and voice quality are extracted and Principal Component Analysis Neural Network (PCANN) is used to reduce dimension of the feature vectors. The results show that voice quality features are effective supplement for recognition, and the method in this paper could improve the recognition ratio effectively. 展开更多
关键词 Speech emotion recognition Principal component analysis Neural network (PCANN) Modified Quadratic Discrimination Function (MQDF)
下载PDF
Pose-robust feature learning for facial expression recognition 被引量:3
3
作者 Feifei ZHANG Yongbin YU +2 位作者 Qirong MAO Jianping GOU Yongzhao ZHAN 《Frontiers of Computer Science》 SCIE EI CSCD 2016年第5期832-844,共13页
Automatic facial expression recognition (FER) from non-frontal views is a challenging research topic which has recently started to attract the attention of the research community. Pose variations are difficult to ta... Automatic facial expression recognition (FER) from non-frontal views is a challenging research topic which has recently started to attract the attention of the research community. Pose variations are difficult to tackle and many face analysis methods require the use of sophisticated nor- malization and initialization procedures. Thus head-pose in- variant facial expression recognition continues to be an is- sue to traditional methods. In this paper, we propose a novel approach for pose-invariant FER based on pose-robust fea- tures which are learned by deep learning methods -- prin- cipal component analysis network (PCANet) and convolu- tional neural networks (CNN) (PRP-CNN). In the first stage, unlabeled frontal face images are used to learn features by PCANet. The features, in the second stage, are used as the tar- get of CNN to learn a feature mapping between frontal faces and non-frontal faces. We then describe the non-frontal face images using the novel descriptions generated by the maps, and get unified descriptors for arbitrary face images. Finally, the pose-robust features are used to train a single classifier for FER instead of training multiple models for each spe- cific pose. Our method, on the whole, does not require pose/ landmark annotation and can recognize facial expression in a wide range of orientations. Extensive experiments on two public databases show that our framework yields dramatic improvements in facial expression analysis. 展开更多
关键词 facial expression recognition pose-robust fea-tures principal component analysis network (PCANet) con-volutional neural networks (CNN)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部