The threat of malware in wireless sensor network has stimulated some activities to model and analyze the malware prevalence.To understand the dynamics of malware propagation in wireless sensor network,we propose a nov...The threat of malware in wireless sensor network has stimulated some activities to model and analyze the malware prevalence.To understand the dynamics of malware propagation in wireless sensor network,we propose a novel epidemic model named as e-SEIR(susceptible-exposed-infectious-recovered)model,which is a set of delayed differential equations,in this paper.The model has taken into account the following two factors:1 Multi-state antivirus measures;2 Temporary immune period.Then,the stability and Hopf bifurcation at the equilibria of linearized model are carefully analyzed by considering the distribution of eigenvalues of characteristic equations.Both mathematical analysis and numerical simulations show that the dynamical features of the proposed model rely on the basic reproduction number R0 and time delayτ.This novel model can help us to better understand and predict the propagation behaviors of malware in wireless sensor networks.展开更多
A neural network Smith predictive control strategy is proposed to deal with inpu t and feedback time delays in telerobot systems. The delay time is assumed to b e invariant and unknown. The proposed control structure...A neural network Smith predictive control strategy is proposed to deal with inpu t and feedback time delays in telerobot systems. The delay time is assumed to b e invariant and unknown. The proposed control structure consists of a slave syst em and a master controller. In the slave system, a recurrent neural network (RNN ) with on-line weight tuning algorithm is employed to approximate the dynamics of the time-delay-free nonlinear plant, which is used to linearize the slave s ystem. The master controller is a Smith predictor for the linearized slave syste m, which provides prediction and maintains the desirable tracking performance. S tability propriety is guaranteed based on the Lyapunov method. A simulation of a two-link robotic manipulator is provided to illustrate the effectiveness of th e proposed control strategy.展开更多
The on-body path loss and time delay of radio propagation in 2. 4/5.2/5.7 GHz wearable body sensor networks (W-BSN) are studied using Remcom XFDTD, a simulation tool based on the finite-difference time- domain metho...The on-body path loss and time delay of radio propagation in 2. 4/5.2/5.7 GHz wearable body sensor networks (W-BSN) are studied using Remcom XFDTD, a simulation tool based on the finite-difference time- domain method. The simulation is performed in the environment of free space with a simplified three- dimensional human body model. Results show that the path loss at a higher radio frequency is significantly smaller. Given that the transmitter and the receiver are located on the body trunk, the path loss relevant to the proposed minimum equivalent surface distance follows a log-fitting parametric model, and the path loss exponents are 4. 7, 4. 1 and 4. 0 at frequencies of 2. 4, 5.2, 5.7 GHz, respectively. On the other hand, the first- arrival delays are less than 2 ns at all receivers, and the maximum time delay spread is about 10 ns. As suggested by the maximum time delay spread, transmission rates of W-BSN must be less than 10^8 symbol/s to avoid intersymbol interference from multiple-path delay.展开更多
Flatness is one of the most important criterion factors to evaluate the quality of the steel strip. To improve the strip' s flatness quality, the most frequently used methodology is to employ the closed-loop automati...Flatness is one of the most important criterion factors to evaluate the quality of the steel strip. To improve the strip' s flatness quality, the most frequently used methodology is to employ the closed-loop automatic shape control system. However, in the shape control system, the shape-meter is always installed at the down way of the exit of the cold rolling mill and can not sense the changes of the strip flatness in the rolling gap directly. This kind of installation results in the delay of the feedback in the control system. Therefore, the stability and response performance of the system are strongly affected by the delay. At present, there is still no mature way to design controllers for systems with time delay. Although the conventional PID controller used in most practical applications has the capability to compensate the delay, the effect of the compensation is limited, especially for the systems with long time delay. Smith predictor, as a compensator for solving this problem, is now widely used in industry systems. However, the request of highly precise model of the system and the poor adaptive performance to the changes of related parameters limit the application of the Smith predictor in practice. In order to overcome the drawbacks of the Smith predictor, a new Smith predictor based on single neural network PID (SNN-PID) is proposed. Because the single neural network is employed into the Smith predictor to improve the controller's self-adaptability, the adaptive capability to the varying parameters of the system is improved. Meanwhile, for the purpose of solving the problems such as time-consuming and complicated calculation of the neural networks in real time, the learning coefficient of neural network is divided into several stages as usually done in expert control system. Therefore, the control system can obtain fast response due to the improved calculation speed of the neural networks. In order to validate the performance of the proposed controller, the experiment is conducted on the shape control system in a 300 mm four-high reversing cold rolling mill. The experimental results show that the SNN-PID with Smith predictor controller can effectively compensate the delay effects and achieve better control performance than the conventional PID controller.展开更多
A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures an...A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures and actuators failures was analyzed using hybrid systems technique based on the robust fault-tolerant control theory. The parametric expression of controller is given based on the feasible solution of linear matrix inequality. The simulation results are provided on the basis of detailed theoretical analysis, which further demonstrate the validity of the proposed schema.展开更多
This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backsteppi...This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backstepping technique. NNs are used to approximate unknown functions dependent on time delay, Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the NN approximation errors. Based on Lyapunov- Krasovskii functional, the semi-global uniform ultimate boundedness of all the signals in the closed-loop system is proved, The feasibility is investigated by two illustrative simulation examples.展开更多
Abstract--This paper provides a survey on modeling and theories of networked control systems (NCS). In the first part, modeling of the different types of imperfections that affect NCS is discussed. These imperfectio...Abstract--This paper provides a survey on modeling and theories of networked control systems (NCS). In the first part, modeling of the different types of imperfections that affect NCS is discussed. These imperfections are quantization errors, packet dropouts, variable sampling/transmission intervals, vari- able transmission delays, and communication constraints. Then follows in the second part a presentation of several theories that have been applied for controlling networked systems. These theories include: input delay system approach, Markovian system approach, switched system approach, stochastic system approach, impulsive system approach, and predictive control approach. In the last part, some advanced issues in NCS including decentral- ized and distributed NCS, cloud control system, and co-design of NCS are reviewed. Index Terms--Decentralized networked control systems (NCS), distributed networked control systems, network constraints, net- worked control system, quantization, time delays.展开更多
Implementing a control system over a communication network induces inevitable time delays that may degrade performance and even cause instability. One of the most effective ways to reduce the negative effect of delays...Implementing a control system over a communication network induces inevitable time delays that may degrade performance and even cause instability. One of the most effective ways to reduce the negative effect of delays on the performance of networked control system (NCS) is to reduce network traffic. In this paper, adjustable deadbands are explored as a solution to reduce network traffic in NCS. A method of fault-tolerant control of networked control system is presented, which takes into account system response as well as network traffic. The integrity design for a kind of NCS with sensor failures and actuator failures is analyzed based on robust fault-tolerant control theory and information scheduling. After detailed theoretical analysis, the paper also provides the simulation results, which further validate the proposed scheme.展开更多
Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network i...Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network input layer, and real time multi step prediction control is proposed for the BP network with delay on the basis of the results of real time multi step prediction, to achieve the simulation of real time fuzzy control of the delayed time system.展开更多
Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCS). The defining feature of an NCS is that information is exchanged using a network a...Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCS). The defining feature of an NCS is that information is exchanged using a network among control system components. Two new concepts including long time delay and short time delay are proposed. The sensor is almost always clock driven. The controller or the actuator is either clock driven or event driven. Four possible driving modes of networked control systems are presented. The open loop mathematic models of networked control systems with long time delay are developed when the system is driven by anyone of the four different modes. The uniformed modeling method of networked control systems with long time delay is proposed. The simulation results are given in the end.展开更多
In this paper,a fault tolerant control with the consideration of actuator fault for a networked control system (NCS) with packet loss is addressed.The NCS with data packet loss can be described as a switched system ...In this paper,a fault tolerant control with the consideration of actuator fault for a networked control system (NCS) with packet loss is addressed.The NCS with data packet loss can be described as a switched system model.Packet loss dependent Lyapunov function is used and a fault tolerant controller is proposed respectively for arbitrary packet loss process and Markovian packet loss process.Considering a controlled plant with external energy-bounded disturbance,a robust H ∞ fault tolerant controller is designed for the NCS.These results are also expanded to the NCS with packet loss and networked-induced delay.Numerical examples are given to illustrate the effectiveness of the proposed design method.展开更多
This paper proposes an adaptive neural network control method for a class of perturbed strict-feedback nonlinear systems with unknown time delays. Radial basis function neural networks are used to approximate unknown ...This paper proposes an adaptive neural network control method for a class of perturbed strict-feedback nonlinear systems with unknown time delays. Radial basis function neural networks are used to approximate unknown intermediate control signals. By constructing appropriate Lyapunov-Krasovskii functionals, the unknown time delay terms have been compensated. Dynamic surface control technique is used to overcome the problem of "explosion of complexity" in backstepping design procedure. In addition, the semiglobal uniform ultimate boundedness of all the signals in the closed-loop system is proved. A main advantage of the proposed controller is that both problems of "curse of dimensionality" and "explosion of complexity" are avoided simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the approach.展开更多
This paper studies local exponential synchronization of complex delayed networks with switching topology via switched system stability theory. First, by a common unitary matrix, the problem of synchronization is trans...This paper studies local exponential synchronization of complex delayed networks with switching topology via switched system stability theory. First, by a common unitary matrix, the problem of synchronization is transformed into the stability analysis of some linear switched delay systems. Then, when all subnetworks are synchronizable, a delay-dependent sufficient condition is given in terms of linear matrix inequalities (LMIs) which guarantees the solvability of the synchronization problem under an average dwell time scheme. We extend this result to the case that not all subnetworks are synchronizable. It is shown that in addition to average dwell time, if the ratio of the total activation time of synchronizable and non-synchronizable subnetworks satisfy an extra condition, then the problem is also solvable. Two numerical examples of delayed dynamical networks with switching topology are given, which demonstrate the effectiveness of obtained results.展开更多
Taking the interaction between a DNA damage repair module, an ATM module, and a P53--MDM2 oscillation module into account, this paper presents a mathematical model of a P53 oscillation network triggered by a DNA damag...Taking the interaction between a DNA damage repair module, an ATM module, and a P53--MDM2 oscillation module into account, this paper presents a mathematical model of a P53 oscillation network triggered by a DNA damage signal in individual cells. The effects of the DNA damage signal and the delay time of P53-induced MDM2 expression on the behaviours of the P53 oscillation network are studied. In the oscillatory state of the P53--MDM2 oscillator, it is found that the pulse number of P53--P oscillation increases with the increase of the initial DNA damage signal, whereas the amplitude and the period of P53--P oscillation are fixed for different initial DNA damage signals, and the period numbers of P53--P oscillations decrease with the increase of time delay of MDM2 expression induced by P53. These theoretical predictions are consistent with previous experimental results. The combined negative feedback of P53--MDM2 with the time delay of P53-induced MDM2 expression causes oscillation behaviour in the P53 network.展开更多
In this paper,a sliding mode observer scheme of sensor fault diagnosis is proposed for a class of time delay nonlinear systems with input uncertainty based on neural network.The sensor fault and the system input uncer...In this paper,a sliding mode observer scheme of sensor fault diagnosis is proposed for a class of time delay nonlinear systems with input uncertainty based on neural network.The sensor fault and the system input uncertainty are assumed to be unknown but bounded.The radial basis function (RBF) neural network is used to approximate the sensor fault.Based on the output of the RBF neural network,the sliding mode observer is presented.Using the Lyapunov method,a criterion for stability is given in terms of matrix inequality.Finally,an example is given for illustrating the availability of the fault diagnosis based on the proposed sliding mode observer.展开更多
Multiplex networks have drawn much attention since they have been observed in many systems,e.g.,brain,transport,and social relationships.In this paper,the nonlinear dynamics of a multiplex network with three neural gr...Multiplex networks have drawn much attention since they have been observed in many systems,e.g.,brain,transport,and social relationships.In this paper,the nonlinear dynamics of a multiplex network with three neural groups and delayed interactions is studied.The stability and bifurcation of the network equilibrium are discussed,and interesting neural activities of the network are explored.Based on the neuron circuit,transfer function circuit,and time delay circuit,a circuit platform of the network is constructed.It is shown that delayed couplings play crucial roles in the network dynamics,e.g.,the enhancement and suppression of the stability,the patterns of the synchronization between networks,and the generation of complicated attractors and multi-stability coexistence.展开更多
Phase space reconstruction is the first step of recognizing the chaotic time series.On the basis of differential entropy ratio method,the embedding dimension opt m and time delay t are optimal for the state space reco...Phase space reconstruction is the first step of recognizing the chaotic time series.On the basis of differential entropy ratio method,the embedding dimension opt m and time delay t are optimal for the state space reconstruction could be determined.But they are not the optimal parameters accepted for prediction.This study proposes an improved method based on the differential entropy ratio and Radial Basis Function(RBF)neural network to estimate the embedding dimension m and the time delay t,which have both optimal characteristics of the state space reconstruction and the prediction.Simulating experiments of Lorenz system and Doffing system show that the original phase space could be reconstructed from the time series effectively,and both the prediction accuracy and prediction length are improved greatly.展开更多
The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. ...The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. Neural networks have the ability to "learn"the characteristics of a system through nonlinear mapping to represent nonlinear functions as well as their inverse functions. This paper presents a model algorithm control method using neural networks for nonlinear time delay systems. Two neural networks are used in the control scheme. One neural network is trained as the model of the nonlinear time delay system, and the other one produces the control inputs. The neural networks are combined with the model algorithm control method to control the nonlinear time delay systems. Three examples are used to illustrate the proposed control method. The simulation results show that the proposed control method has a good control performance for nonlinear time delay systems.展开更多
Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face ...Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face great challenges in practical applications due to high computational complexity and dependence on ideal assumptions.This paper presents an effective DOA estimation approach based on a deep residual network(DRN)for the underdetermined case.We first extract an input feature from a new matrix calculated by stacking several covariance matrices corresponding to different time delays.We then provide the input feature to the trained DRN to construct the super resolution spectrum.The DRN learns the mapping relationship between the input feature and the spatial spectrum by training.The proposed approach is superior to existing model-based estimation methods in terms of calculation efficiency,independence of source sparseness and adaptive capacity to non-ideal conditions(e.g.,low signal to noise ratio,short bit sequence).Simulations demonstrate the validity and strong performance of the proposed algorithm on both overdetermined and underdetermined cases.展开更多
基金National Natural Science Foundation of China(No.61379125)
文摘The threat of malware in wireless sensor network has stimulated some activities to model and analyze the malware prevalence.To understand the dynamics of malware propagation in wireless sensor network,we propose a novel epidemic model named as e-SEIR(susceptible-exposed-infectious-recovered)model,which is a set of delayed differential equations,in this paper.The model has taken into account the following two factors:1 Multi-state antivirus measures;2 Temporary immune period.Then,the stability and Hopf bifurcation at the equilibria of linearized model are carefully analyzed by considering the distribution of eigenvalues of characteristic equations.Both mathematical analysis and numerical simulations show that the dynamical features of the proposed model rely on the basic reproduction number R0 and time delayτ.This novel model can help us to better understand and predict the propagation behaviors of malware in wireless sensor networks.
文摘A neural network Smith predictive control strategy is proposed to deal with inpu t and feedback time delays in telerobot systems. The delay time is assumed to b e invariant and unknown. The proposed control structure consists of a slave syst em and a master controller. In the slave system, a recurrent neural network (RNN ) with on-line weight tuning algorithm is employed to approximate the dynamics of the time-delay-free nonlinear plant, which is used to linearize the slave s ystem. The master controller is a Smith predictor for the linearized slave syste m, which provides prediction and maintains the desirable tracking performance. S tability propriety is guaranteed based on the Lyapunov method. A simulation of a two-link robotic manipulator is provided to illustrate the effectiveness of th e proposed control strategy.
基金The High Technology Research and Development Program of Jiangsu Province (NoBG2005001)the Hong Kong Inno-vation and Technology Fund (NoITS/99/02)
文摘The on-body path loss and time delay of radio propagation in 2. 4/5.2/5.7 GHz wearable body sensor networks (W-BSN) are studied using Remcom XFDTD, a simulation tool based on the finite-difference time- domain method. The simulation is performed in the environment of free space with a simplified three- dimensional human body model. Results show that the path loss at a higher radio frequency is significantly smaller. Given that the transmitter and the receiver are located on the body trunk, the path loss relevant to the proposed minimum equivalent surface distance follows a log-fitting parametric model, and the path loss exponents are 4. 7, 4. 1 and 4. 0 at frequencies of 2. 4, 5.2, 5.7 GHz, respectively. On the other hand, the first- arrival delays are less than 2 ns at all receivers, and the maximum time delay spread is about 10 ns. As suggested by the maximum time delay spread, transmission rates of W-BSN must be less than 10^8 symbol/s to avoid intersymbol interference from multiple-path delay.
基金supported by National Natural Science Foundation of China (Grant No. 604740044)Hebei Provincial Natural Science Foundation of China (Grant No. E2004000221)
文摘Flatness is one of the most important criterion factors to evaluate the quality of the steel strip. To improve the strip' s flatness quality, the most frequently used methodology is to employ the closed-loop automatic shape control system. However, in the shape control system, the shape-meter is always installed at the down way of the exit of the cold rolling mill and can not sense the changes of the strip flatness in the rolling gap directly. This kind of installation results in the delay of the feedback in the control system. Therefore, the stability and response performance of the system are strongly affected by the delay. At present, there is still no mature way to design controllers for systems with time delay. Although the conventional PID controller used in most practical applications has the capability to compensate the delay, the effect of the compensation is limited, especially for the systems with long time delay. Smith predictor, as a compensator for solving this problem, is now widely used in industry systems. However, the request of highly precise model of the system and the poor adaptive performance to the changes of related parameters limit the application of the Smith predictor in practice. In order to overcome the drawbacks of the Smith predictor, a new Smith predictor based on single neural network PID (SNN-PID) is proposed. Because the single neural network is employed into the Smith predictor to improve the controller's self-adaptability, the adaptive capability to the varying parameters of the system is improved. Meanwhile, for the purpose of solving the problems such as time-consuming and complicated calculation of the neural networks in real time, the learning coefficient of neural network is divided into several stages as usually done in expert control system. Therefore, the control system can obtain fast response due to the improved calculation speed of the neural networks. In order to validate the performance of the proposed controller, the experiment is conducted on the shape control system in a 300 mm four-high reversing cold rolling mill. The experimental results show that the SNN-PID with Smith predictor controller can effectively compensate the delay effects and achieve better control performance than the conventional PID controller.
基金This project was supported by the National Natural Science Foundation of China (60274014)Doctor Foundation of China Education Ministry (20020487006).
文摘A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures and actuators failures was analyzed using hybrid systems technique based on the robust fault-tolerant control theory. The parametric expression of controller is given based on the feasible solution of linear matrix inequality. The simulation results are provided on the basis of detailed theoretical analysis, which further demonstrate the validity of the proposed schema.
基金This work was supported by the National Natural Science Foundation of China (No. 60374015) and Shaanxi Province Nature Science Foundation(No. 2003A15).
文摘This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backstepping technique. NNs are used to approximate unknown functions dependent on time delay, Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the NN approximation errors. Based on Lyapunov- Krasovskii functional, the semi-global uniform ultimate boundedness of all the signals in the closed-loop system is proved, The feasibility is investigated by two illustrative simulation examples.
基金supported by the Deanship of Scientific Research(DSR) at KFUPM through Research Project(IN141048)
文摘Abstract--This paper provides a survey on modeling and theories of networked control systems (NCS). In the first part, modeling of the different types of imperfections that affect NCS is discussed. These imperfections are quantization errors, packet dropouts, variable sampling/transmission intervals, vari- able transmission delays, and communication constraints. Then follows in the second part a presentation of several theories that have been applied for controlling networked systems. These theories include: input delay system approach, Markovian system approach, switched system approach, stochastic system approach, impulsive system approach, and predictive control approach. In the last part, some advanced issues in NCS including decentral- ized and distributed NCS, cloud control system, and co-design of NCS are reviewed. Index Terms--Decentralized networked control systems (NCS), distributed networked control systems, network constraints, net- worked control system, quantization, time delays.
基金Supported by National Natural Science Foundation of P. R. China (60274014)the Specialized Research Fund for Doctoral Program of Higher Education of P. R. China (20020487006)
文摘Implementing a control system over a communication network induces inevitable time delays that may degrade performance and even cause instability. One of the most effective ways to reduce the negative effect of delays on the performance of networked control system (NCS) is to reduce network traffic. In this paper, adjustable deadbands are explored as a solution to reduce network traffic in NCS. A method of fault-tolerant control of networked control system is presented, which takes into account system response as well as network traffic. The integrity design for a kind of NCS with sensor failures and actuator failures is analyzed based on robust fault-tolerant control theory and information scheduling. After detailed theoretical analysis, the paper also provides the simulation results, which further validate the proposed scheme.
文摘Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network input layer, and real time multi step prediction control is proposed for the BP network with delay on the basis of the results of real time multi step prediction, to achieve the simulation of real time fuzzy control of the delayed time system.
基金the National Natural Science Foundation of China (60474076)Natural Science Foundationof Jiangxi Province, China (2007GZS0899)Scientific Research Foundation of Jiangxi Provincial Education Department, China(GJJ08238).
文摘Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCS). The defining feature of an NCS is that information is exchanged using a network among control system components. Two new concepts including long time delay and short time delay are proposed. The sensor is almost always clock driven. The controller or the actuator is either clock driven or event driven. Four possible driving modes of networked control systems are presented. The open loop mathematic models of networked control systems with long time delay are developed when the system is driven by anyone of the four different modes. The uniformed modeling method of networked control systems with long time delay is proposed. The simulation results are given in the end.
基金supported by National Natural Science Foundation of China (No. 60874052)
文摘In this paper,a fault tolerant control with the consideration of actuator fault for a networked control system (NCS) with packet loss is addressed.The NCS with data packet loss can be described as a switched system model.Packet loss dependent Lyapunov function is used and a fault tolerant controller is proposed respectively for arbitrary packet loss process and Markovian packet loss process.Considering a controlled plant with external energy-bounded disturbance,a robust H ∞ fault tolerant controller is designed for the NCS.These results are also expanded to the NCS with packet loss and networked-induced delay.Numerical examples are given to illustrate the effectiveness of the proposed design method.
文摘This paper proposes an adaptive neural network control method for a class of perturbed strict-feedback nonlinear systems with unknown time delays. Radial basis function neural networks are used to approximate unknown intermediate control signals. By constructing appropriate Lyapunov-Krasovskii functionals, the unknown time delay terms have been compensated. Dynamic surface control technique is used to overcome the problem of "explosion of complexity" in backstepping design procedure. In addition, the semiglobal uniform ultimate boundedness of all the signals in the closed-loop system is proved. A main advantage of the proposed controller is that both problems of "curse of dimensionality" and "explosion of complexity" are avoided simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the approach.
基金the National Natural Science Foundation of China (No.60874024, 60574013).
文摘This paper studies local exponential synchronization of complex delayed networks with switching topology via switched system stability theory. First, by a common unitary matrix, the problem of synchronization is transformed into the stability analysis of some linear switched delay systems. Then, when all subnetworks are synchronizable, a delay-dependent sufficient condition is given in terms of linear matrix inequalities (LMIs) which guarantees the solvability of the synchronization problem under an average dwell time scheme. We extend this result to the case that not all subnetworks are synchronizable. It is shown that in addition to average dwell time, if the ratio of the total activation time of synchronizable and non-synchronizable subnetworks satisfy an extra condition, then the problem is also solvable. Two numerical examples of delayed dynamical networks with switching topology are given, which demonstrate the effectiveness of obtained results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10875049)the Key Project of Chinese Ministry of Education (Grant No. 108096)the Programme of Introducing Talents of Discipline to Universities (Grant No. B08033)
文摘Taking the interaction between a DNA damage repair module, an ATM module, and a P53--MDM2 oscillation module into account, this paper presents a mathematical model of a P53 oscillation network triggered by a DNA damage signal in individual cells. The effects of the DNA damage signal and the delay time of P53-induced MDM2 expression on the behaviours of the P53 oscillation network are studied. In the oscillatory state of the P53--MDM2 oscillator, it is found that the pulse number of P53--P oscillation increases with the increase of the initial DNA damage signal, whereas the amplitude and the period of P53--P oscillation are fixed for different initial DNA damage signals, and the period numbers of P53--P oscillations decrease with the increase of time delay of MDM2 expression induced by P53. These theoretical predictions are consistent with previous experimental results. The combined negative feedback of P53--MDM2 with the time delay of P53-induced MDM2 expression causes oscillation behaviour in the P53 network.
基金Natural Science Foundation of Jiangsu Province (No.SBK20082815)Aeronautical Science Foundation of China (No.20075152014)
文摘In this paper,a sliding mode observer scheme of sensor fault diagnosis is proposed for a class of time delay nonlinear systems with input uncertainty based on neural network.The sensor fault and the system input uncertainty are assumed to be unknown but bounded.The radial basis function (RBF) neural network is used to approximate the sensor fault.Based on the output of the RBF neural network,the sliding mode observer is presented.Using the Lyapunov method,a criterion for stability is given in terms of matrix inequality.Finally,an example is given for illustrating the availability of the fault diagnosis based on the proposed sliding mode observer.
基金Project supported by the National Natural Science Foundation of China(Nos.11872169 and 11472097)the Fundamental Research Funds for the Central Universities of China(No.B200202114)the Natural Science Foundation of Jiangsu Province of China(No.BK20191295)。
文摘Multiplex networks have drawn much attention since they have been observed in many systems,e.g.,brain,transport,and social relationships.In this paper,the nonlinear dynamics of a multiplex network with three neural groups and delayed interactions is studied.The stability and bifurcation of the network equilibrium are discussed,and interesting neural activities of the network are explored.Based on the neuron circuit,transfer function circuit,and time delay circuit,a circuit platform of the network is constructed.It is shown that delayed couplings play crucial roles in the network dynamics,e.g.,the enhancement and suppression of the stability,the patterns of the synchronization between networks,and the generation of complicated attractors and multi-stability coexistence.
基金Supported by the Key Program of National Natural Science Foundation of China(Nos.61077071,51075349)Program of National Natural Science Foundation of Hebei Province(Nos.F2011203207,F2010001312)
文摘Phase space reconstruction is the first step of recognizing the chaotic time series.On the basis of differential entropy ratio method,the embedding dimension opt m and time delay t are optimal for the state space reconstruction could be determined.But they are not the optimal parameters accepted for prediction.This study proposes an improved method based on the differential entropy ratio and Radial Basis Function(RBF)neural network to estimate the embedding dimension m and the time delay t,which have both optimal characteristics of the state space reconstruction and the prediction.Simulating experiments of Lorenz system and Doffing system show that the original phase space could be reconstructed from the time series effectively,and both the prediction accuracy and prediction length are improved greatly.
基金supported by the Brain Korea 21 PLUS Project,National Research Foundation of Korea(NRF-2013R1A2A2A01068127NRF-2013R1A1A2A10009458)Jiangsu Province University Natural Science Research Project(13KJB510003)
文摘The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. Neural networks have the ability to "learn"the characteristics of a system through nonlinear mapping to represent nonlinear functions as well as their inverse functions. This paper presents a model algorithm control method using neural networks for nonlinear time delay systems. Two neural networks are used in the control scheme. One neural network is trained as the model of the nonlinear time delay system, and the other one produces the control inputs. The neural networks are combined with the model algorithm control method to control the nonlinear time delay systems. Three examples are used to illustrate the proposed control method. The simulation results show that the proposed control method has a good control performance for nonlinear time delay systems.
基金supported by the Program for Innovative Research Groups of the Hunan Provincial Natural Science Foundation of China(2019JJ10004)。
文摘Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face great challenges in practical applications due to high computational complexity and dependence on ideal assumptions.This paper presents an effective DOA estimation approach based on a deep residual network(DRN)for the underdetermined case.We first extract an input feature from a new matrix calculated by stacking several covariance matrices corresponding to different time delays.We then provide the input feature to the trained DRN to construct the super resolution spectrum.The DRN learns the mapping relationship between the input feature and the spatial spectrum by training.The proposed approach is superior to existing model-based estimation methods in terms of calculation efficiency,independence of source sparseness and adaptive capacity to non-ideal conditions(e.g.,low signal to noise ratio,short bit sequence).Simulations demonstrate the validity and strong performance of the proposed algorithm on both overdetermined and underdetermined cases.