With the widespread use of Chinese globally, the number of Chinese learners has been increasing, leading to various grammatical errors among beginners. Additionally, as domestic efforts to develop industrial informati...With the widespread use of Chinese globally, the number of Chinese learners has been increasing, leading to various grammatical errors among beginners. Additionally, as domestic efforts to develop industrial information grow, electronic documents have also proliferated. When dealing with numerous electronic documents and texts written by Chinese beginners, manually written texts often contain hidden grammatical errors, posing a significant challenge to traditional manual proofreading. Correcting these grammatical errors is crucial to ensure fluency and readability. However, certain special types of text grammar or logical errors can have a huge impact, and manually proofreading a large number of texts individually is clearly impractical. Consequently, research on text error correction techniques has garnered significant attention in recent years. The advent and advancement of deep learning have paved the way for sequence-to-sequence learning methods to be extensively applied to the task of text error correction. This paper presents a comprehensive analysis of Chinese text grammar error correction technology, elaborates on its current research status, discusses existing problems, proposes preliminary solutions, and conducts experiments using judicial documents as an example. The aim is to provide a feasible research approach for Chinese text error correction technology.展开更多
Campus network establishment belongs to the field of system engineering. It is necessary to carry on cooperation among departments. Standardization is the key to solve the problem, and its core is standardization of d...Campus network establishment belongs to the field of system engineering. It is necessary to carry on cooperation among departments. Standardization is the key to solve the problem, and its core is standardization of documents. Therefore, this paper will be concentrated on the discussion of relevant problems in combination with our campus network practice.展开更多
地球科学的研究成果通常记录在技术报告、期刊论文、书籍等文献中,但许多详细的地球科学报告未被使用,这为信息提取提供了机遇。为此,我们提出了一种名为GMNER(Geological Minerals named entity recognize,MNER)的深度神经网络模型,用...地球科学的研究成果通常记录在技术报告、期刊论文、书籍等文献中,但许多详细的地球科学报告未被使用,这为信息提取提供了机遇。为此,我们提出了一种名为GMNER(Geological Minerals named entity recognize,MNER)的深度神经网络模型,用于识别和提取矿物类型、地质构造、岩石与地质时间等关键信息。与传统方法不同,本次采用了大规模预训练模型BERT(Bidirectional Encoder Representations from Transformers,BERT)和深度神经网络来捕捉上下文信息,并结合条件随机场(Conditional random field,CRF)以获得准确结果。实验结果表明,MNER模型在中文地质文献中表现出色,平均精确度为0.8984,平均召回率0.9227,平均F1分数0.9104。研究不仅为自动矿物信息提取提供了新途径,也有望促进矿产资源管理和可持续利用。展开更多
文摘With the widespread use of Chinese globally, the number of Chinese learners has been increasing, leading to various grammatical errors among beginners. Additionally, as domestic efforts to develop industrial information grow, electronic documents have also proliferated. When dealing with numerous electronic documents and texts written by Chinese beginners, manually written texts often contain hidden grammatical errors, posing a significant challenge to traditional manual proofreading. Correcting these grammatical errors is crucial to ensure fluency and readability. However, certain special types of text grammar or logical errors can have a huge impact, and manually proofreading a large number of texts individually is clearly impractical. Consequently, research on text error correction techniques has garnered significant attention in recent years. The advent and advancement of deep learning have paved the way for sequence-to-sequence learning methods to be extensively applied to the task of text error correction. This paper presents a comprehensive analysis of Chinese text grammar error correction technology, elaborates on its current research status, discusses existing problems, proposes preliminary solutions, and conducts experiments using judicial documents as an example. The aim is to provide a feasible research approach for Chinese text error correction technology.
文摘Campus network establishment belongs to the field of system engineering. It is necessary to carry on cooperation among departments. Standardization is the key to solve the problem, and its core is standardization of documents. Therefore, this paper will be concentrated on the discussion of relevant problems in combination with our campus network practice.
文摘地球科学的研究成果通常记录在技术报告、期刊论文、书籍等文献中,但许多详细的地球科学报告未被使用,这为信息提取提供了机遇。为此,我们提出了一种名为GMNER(Geological Minerals named entity recognize,MNER)的深度神经网络模型,用于识别和提取矿物类型、地质构造、岩石与地质时间等关键信息。与传统方法不同,本次采用了大规模预训练模型BERT(Bidirectional Encoder Representations from Transformers,BERT)和深度神经网络来捕捉上下文信息,并结合条件随机场(Conditional random field,CRF)以获得准确结果。实验结果表明,MNER模型在中文地质文献中表现出色,平均精确度为0.8984,平均召回率0.9227,平均F1分数0.9104。研究不仅为自动矿物信息提取提供了新途径,也有望促进矿产资源管理和可持续利用。