The question of whether an ideal network exists with global scalability in its full life cycle has always been a first-principles problem in the research of network systems and architectures.Thus far,it has not been p...The question of whether an ideal network exists with global scalability in its full life cycle has always been a first-principles problem in the research of network systems and architectures.Thus far,it has not been possible to scientifically practice the design criteria of an ideal network in a unimorphic network system,making it difficult to adapt to known services with clear application scenarios while supporting the ever-growing future services with unexpected characteristics.Here,we theoretically prove that no unimorphic network system can simultaneously meet the scalability requirement in a full cycle in three dimensions—the service-level agreement(S),multiplexity(M),and variousness(V)—which we name as the“impossible SMV triangle”dilemma.It is only by transforming the current network development paradigm that the contradiction between global scalability and a unified network infrastructure can be resolved from the perspectives of thinking,methodology,and practice norms.In this paper,we propose a theoretical framework called the polymorphic network environment(PNE),the first principle of which is to separate or decouple application network systems from the infrastructure environment and,under the given resource conditions,use core technologies such as the elementization of network baselines,the dynamic aggregation of resources,and collaborative software and hardware arrangements to generate the capability of the“network of networks.”This makes it possible to construct an ideal network system that is designed for change and capable of symbiosis and coexistence with the generative network morpha in the spatiotemporal dimensions.An environment test for principle verification shows that the generated representative application network modalities can not only coexist without mutual influence but also independently match well-defined multimedia services or custom services under the constraints of technical and economic indicators.展开更多
Today the cycle time of the product develop is requ ir ed to be shortened. At the same time the requirement of the customers becomes mo re and more diverse and complex. The capability of the develop unit is limited b ...Today the cycle time of the product develop is requ ir ed to be shortened. At the same time the requirement of the customers becomes mo re and more diverse and complex. The capability of the develop unit is limited b ecause of the existence of heterogeneous systems and distributed environments. I n this paper, we bring forward a new approach to solve the problem in product de velopment process. We also settle part key technologies in it. A great deal of information from all kinds of sources in the distributed develop ment process is interweaved. The solution to organize the workflow and manage th e information in the process is called for anxiously. We use a new approach that is asynchronous and synchronous coupling product development approach based on the network. The approach extends the develop process from the time axis. Then t he activities in the process are organized from the asynchronous and synchronous aspects. The state of every activity projects at the ASN (active semantic netwo rk). The ASN includes decision system, intelligent agent, user interface and net work. The ASN decides the types and states of the activities and deals with the couple relationship among them. The knowledge stored in ASN is open to all users through the relative interfaces. Every specialist keeps contact with their user s relying on collaborative platform implements CSCW (computer support collaborat ive work) that integrated product/process design and development. The lack of gl obal communication in product development process can be prevented in the most d egree. The key technologies that exist in the asynchronous and synchronous coupling pro duct develop approach include: integrated development structure, orderly organiz ation of information, transparent management of process, agile transfer of infor mation and rapid prototype. The development process can be completed quickly by these technologies. The technologies involve wide content. In this paper, we dis cuss some key technologies. We validate the approach by the projectrapid response manufacturing a pplication in the distributed environment. The expensive device, high technology and low using lead to RE (Rapid engineering) and RP (Rapid prototype) service a pplication by the network. RE and RP develop rapidly due to the accelerated prod uct development process. RE and RP application service platform is built in the project.展开更多
Increasing environmental awareness and stringent environmental regulations have motivated many companies to incorporate ecodesign into product development. To assist companies to address the challenge, this research p...Increasing environmental awareness and stringent environmental regulations have motivated many companies to incorporate ecodesign into product development. To assist companies to address the challenge, this research presents a design for environment (DfE) methodology to evaluate and improve derivative consumer electronic product development using a back-propagation neural network (BPNN) model and a technique for order preference by similarity to ideal solution (TOPSIS) method. Based on use of a BPNN, the life cycle assessment (LCA) models are developed to estimate quantities of hazardous chemical substances and energy consumption for a derivative consumer electronic product throughout the product life cycle. A performance evaluation and improvement model for DfE is then devised based on the TOPSIS method to analyze the ecodesign performance and provide concrete improvement strategies. With the aforementioned analysis of environmental performance, an enterprise can profoundly understand and significantly enhance the relative DfE performance of a new product compared to the similar competitive products. Finally, we apply an optical mouse development project as a case to elaborate and demonstrate the effectiveness of the proposed methodology. These analytical results can let us understand the DfE performance ranking and acquire the maximum reduced quantity of each DfE criterion for each module of a new product. Meanwhile, to enhance the green competitiveness of the new product, we recommend that the engineers should decrease the area of the circuit board of the new product. In addition, the material of the USB cable for the new product should be switched from the PVC material to the PE material.展开更多
基金supported by the National Key Research and Development Program of China(2022YFB2901403)the Songshan Laboratory Project(221100210900-02).
文摘The question of whether an ideal network exists with global scalability in its full life cycle has always been a first-principles problem in the research of network systems and architectures.Thus far,it has not been possible to scientifically practice the design criteria of an ideal network in a unimorphic network system,making it difficult to adapt to known services with clear application scenarios while supporting the ever-growing future services with unexpected characteristics.Here,we theoretically prove that no unimorphic network system can simultaneously meet the scalability requirement in a full cycle in three dimensions—the service-level agreement(S),multiplexity(M),and variousness(V)—which we name as the“impossible SMV triangle”dilemma.It is only by transforming the current network development paradigm that the contradiction between global scalability and a unified network infrastructure can be resolved from the perspectives of thinking,methodology,and practice norms.In this paper,we propose a theoretical framework called the polymorphic network environment(PNE),the first principle of which is to separate or decouple application network systems from the infrastructure environment and,under the given resource conditions,use core technologies such as the elementization of network baselines,the dynamic aggregation of resources,and collaborative software and hardware arrangements to generate the capability of the“network of networks.”This makes it possible to construct an ideal network system that is designed for change and capable of symbiosis and coexistence with the generative network morpha in the spatiotemporal dimensions.An environment test for principle verification shows that the generated representative application network modalities can not only coexist without mutual influence but also independently match well-defined multimedia services or custom services under the constraints of technical and economic indicators.
文摘Today the cycle time of the product develop is requ ir ed to be shortened. At the same time the requirement of the customers becomes mo re and more diverse and complex. The capability of the develop unit is limited b ecause of the existence of heterogeneous systems and distributed environments. I n this paper, we bring forward a new approach to solve the problem in product de velopment process. We also settle part key technologies in it. A great deal of information from all kinds of sources in the distributed develop ment process is interweaved. The solution to organize the workflow and manage th e information in the process is called for anxiously. We use a new approach that is asynchronous and synchronous coupling product development approach based on the network. The approach extends the develop process from the time axis. Then t he activities in the process are organized from the asynchronous and synchronous aspects. The state of every activity projects at the ASN (active semantic netwo rk). The ASN includes decision system, intelligent agent, user interface and net work. The ASN decides the types and states of the activities and deals with the couple relationship among them. The knowledge stored in ASN is open to all users through the relative interfaces. Every specialist keeps contact with their user s relying on collaborative platform implements CSCW (computer support collaborat ive work) that integrated product/process design and development. The lack of gl obal communication in product development process can be prevented in the most d egree. The key technologies that exist in the asynchronous and synchronous coupling pro duct develop approach include: integrated development structure, orderly organiz ation of information, transparent management of process, agile transfer of infor mation and rapid prototype. The development process can be completed quickly by these technologies. The technologies involve wide content. In this paper, we dis cuss some key technologies. We validate the approach by the projectrapid response manufacturing a pplication in the distributed environment. The expensive device, high technology and low using lead to RE (Rapid engineering) and RP (Rapid prototype) service a pplication by the network. RE and RP develop rapidly due to the accelerated prod uct development process. RE and RP application service platform is built in the project.
基金supported by the National Science Council under project No.NSC 99-222-E-251-001
文摘Increasing environmental awareness and stringent environmental regulations have motivated many companies to incorporate ecodesign into product development. To assist companies to address the challenge, this research presents a design for environment (DfE) methodology to evaluate and improve derivative consumer electronic product development using a back-propagation neural network (BPNN) model and a technique for order preference by similarity to ideal solution (TOPSIS) method. Based on use of a BPNN, the life cycle assessment (LCA) models are developed to estimate quantities of hazardous chemical substances and energy consumption for a derivative consumer electronic product throughout the product life cycle. A performance evaluation and improvement model for DfE is then devised based on the TOPSIS method to analyze the ecodesign performance and provide concrete improvement strategies. With the aforementioned analysis of environmental performance, an enterprise can profoundly understand and significantly enhance the relative DfE performance of a new product compared to the similar competitive products. Finally, we apply an optical mouse development project as a case to elaborate and demonstrate the effectiveness of the proposed methodology. These analytical results can let us understand the DfE performance ranking and acquire the maximum reduced quantity of each DfE criterion for each module of a new product. Meanwhile, to enhance the green competitiveness of the new product, we recommend that the engineers should decrease the area of the circuit board of the new product. In addition, the material of the USB cable for the new product should be switched from the PVC material to the PE material.