Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been ...Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets.展开更多
In this paper, we will explain the relevance of the starant graphs, graphs created by us in the year of 2002. They were basically circulant graphs with a star graph that connects to all the vertices of the circulant g...In this paper, we will explain the relevance of the starant graphs, graphs created by us in the year of 2002. They were basically circulant graphs with a star graph that connects to all the vertices of the circulant graphs from inside of them, but they did not exist as a separate object of study in the year of 2002, as for all we knew. We now know that they can be used to model even social networking interactions, and they do that job better than any other graph we could be trying to use there. With the development of our mathematical tools, lots of conclusions will be made much more believable and therefore will become much more likely to get support from the relevant industries when attached to new queries.展开更多
Both farmers and traders benefit from trade networking, which is crucial for the local economy. Therefore, it is crucial to understand how these networks operate, and how they can be managed more effectively. Througho...Both farmers and traders benefit from trade networking, which is crucial for the local economy. Therefore, it is crucial to understand how these networks operate, and how they can be managed more effectively. Throughout this study, we examine the economic networks formed between farmers and traders through the trade of food products. These networks are analyzed from the perspective of their structure and the factors that influence their development. Using data from 18 farmers and 15 traders, we applied exponential random graph models. The results of our study showed that connectivity, Popularity Spread, activity spread, good transportation systems, and high yields all affected the development of networks. Therefore, farmers’ productivity and high market demand can contribute to local food-crop trade. The network was not affected by reciprocity, open markets, proximity to locations, or trade experience of actors. Policy makers should consider these five factors when formulating policies for local food-crop trade. Additionally, local actors should be encouraged to use these factors to improve their network development. However, it is important to note that these factors alone cannot guarantee success. Policy makers and actors must also consider other factors such as legal frameworks, economic policies, and resource availability. Our approach can be used in future research to determine how traders and farmers can enhance productivity and profit in West Africa. This study addresses a research gap by examining factors influencing local food trade in a developing country.展开更多
为解决目前基于节点采样的图池化方法中所存在的评估节点重要性的策略过于简单以及子结构特征信息大量丢失等问题,提出了基于节点采样的子结构代表层次池化模型(sub-structure representative hierarchical pooling model based on node...为解决目前基于节点采样的图池化方法中所存在的评估节点重要性的策略过于简单以及子结构特征信息大量丢失等问题,提出了基于节点采样的子结构代表层次池化模型(sub-structure representative hierarchical pooling model based on node sampling,SsrPool)。该模型主要包括子结构代表节点选择模块和子结构代表节点特征生成模块2个部分。首先,子结构代表节点选择模块同时考虑了节点特征信息以及结构信息,利用不同方法评估节点重要性并通过不同重要性分数协作产生鲁棒的节点排名以指导节点选择。其次,子结构代表节点特征生成模块通过特征融合保留局部子结构特征信息。通过将SsrPool与现有神经网络相结合,在不同规模公共数据集上的图分类实验结果证明了SsrPool的有效性。展开更多
现有5G(5th GenerationMobile Communication Technology)核心网异常检测主要基于信令流量深度解析,但较少利用核心网网络功能交互关系的作用。针对上述问题,提出一种基于交互的5G核心网网络功能异常检测模型。首先,该模型以行为分析为...现有5G(5th GenerationMobile Communication Technology)核心网异常检测主要基于信令流量深度解析,但较少利用核心网网络功能交互关系的作用。针对上述问题,提出一种基于交互的5G核心网网络功能异常检测模型。首先,该模型以行为分析为驱动,基于信令流量和网络功能注册数据提取多维属性,通过行为画像来表征网络功能行为模式,并采用集成学习算法RFECV(Recursive Feature Elimination with Cross-Validation)进行属性特征选择,降低特征维度的同时筛选出与区分网络功能行为模式高度相关的属性特征。然后,模型基于网络功能交互关系对核心网进行图建模,建模后的图数据融合了网络功能属性信息和交互信息。最后,模型通过基于空间域的图卷积网络聚合邻域节点属性信息和结构信息来融合行为模式特征,新生成的节点表示用于分类,从而将核心网网络功能异常检测问题转化为图节点分类问题。通过在free5GC仿真平台上采集数据,并在搭建的异常检测系统中的实验表明,该模型的异常检测性能优于基于属性特征分析的传统机器学习模型、基于结构特征分析的图嵌入模型及部分5G核心网异常检测模型。10%数据集作为训练集时,所提模型的准确率比支持向量机模型提高6.6%,比Struc2vec模型提高13%,比深度神经网络模型提高8%。展开更多
基金This work was supported by the Kyonggi University Research Grant 2022.
文摘Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets.
文摘In this paper, we will explain the relevance of the starant graphs, graphs created by us in the year of 2002. They were basically circulant graphs with a star graph that connects to all the vertices of the circulant graphs from inside of them, but they did not exist as a separate object of study in the year of 2002, as for all we knew. We now know that they can be used to model even social networking interactions, and they do that job better than any other graph we could be trying to use there. With the development of our mathematical tools, lots of conclusions will be made much more believable and therefore will become much more likely to get support from the relevant industries when attached to new queries.
文摘Both farmers and traders benefit from trade networking, which is crucial for the local economy. Therefore, it is crucial to understand how these networks operate, and how they can be managed more effectively. Throughout this study, we examine the economic networks formed between farmers and traders through the trade of food products. These networks are analyzed from the perspective of their structure and the factors that influence their development. Using data from 18 farmers and 15 traders, we applied exponential random graph models. The results of our study showed that connectivity, Popularity Spread, activity spread, good transportation systems, and high yields all affected the development of networks. Therefore, farmers’ productivity and high market demand can contribute to local food-crop trade. The network was not affected by reciprocity, open markets, proximity to locations, or trade experience of actors. Policy makers should consider these five factors when formulating policies for local food-crop trade. Additionally, local actors should be encouraged to use these factors to improve their network development. However, it is important to note that these factors alone cannot guarantee success. Policy makers and actors must also consider other factors such as legal frameworks, economic policies, and resource availability. Our approach can be used in future research to determine how traders and farmers can enhance productivity and profit in West Africa. This study addresses a research gap by examining factors influencing local food trade in a developing country.
文摘为解决目前基于节点采样的图池化方法中所存在的评估节点重要性的策略过于简单以及子结构特征信息大量丢失等问题,提出了基于节点采样的子结构代表层次池化模型(sub-structure representative hierarchical pooling model based on node sampling,SsrPool)。该模型主要包括子结构代表节点选择模块和子结构代表节点特征生成模块2个部分。首先,子结构代表节点选择模块同时考虑了节点特征信息以及结构信息,利用不同方法评估节点重要性并通过不同重要性分数协作产生鲁棒的节点排名以指导节点选择。其次,子结构代表节点特征生成模块通过特征融合保留局部子结构特征信息。通过将SsrPool与现有神经网络相结合,在不同规模公共数据集上的图分类实验结果证明了SsrPool的有效性。
文摘现有5G(5th GenerationMobile Communication Technology)核心网异常检测主要基于信令流量深度解析,但较少利用核心网网络功能交互关系的作用。针对上述问题,提出一种基于交互的5G核心网网络功能异常检测模型。首先,该模型以行为分析为驱动,基于信令流量和网络功能注册数据提取多维属性,通过行为画像来表征网络功能行为模式,并采用集成学习算法RFECV(Recursive Feature Elimination with Cross-Validation)进行属性特征选择,降低特征维度的同时筛选出与区分网络功能行为模式高度相关的属性特征。然后,模型基于网络功能交互关系对核心网进行图建模,建模后的图数据融合了网络功能属性信息和交互信息。最后,模型通过基于空间域的图卷积网络聚合邻域节点属性信息和结构信息来融合行为模式特征,新生成的节点表示用于分类,从而将核心网网络功能异常检测问题转化为图节点分类问题。通过在free5GC仿真平台上采集数据,并在搭建的异常检测系统中的实验表明,该模型的异常检测性能优于基于属性特征分析的传统机器学习模型、基于结构特征分析的图嵌入模型及部分5G核心网异常检测模型。10%数据集作为训练集时,所提模型的准确率比支持向量机模型提高6.6%,比Struc2vec模型提高13%,比深度神经网络模型提高8%。