Information centric networking(ICN) is a new network architecture that is centred on accessing content. It aims to solve some of the problems associated with IP networks, increasing content distribution capability and...Information centric networking(ICN) is a new network architecture that is centred on accessing content. It aims to solve some of the problems associated with IP networks, increasing content distribution capability and improving users' experience. To analyse the requests' patterns and fully utilize the universal cached contents, a novel intelligent resources management system is proposed, which enables effi cient cache resource allocation in real time, based on changing user demand patterns. The system is composed of two parts. The fi rst part is a fi ne-grain traffi c estimation algorithm called Temporal Poisson traffi c prediction(TP2) that aims at analysing the traffi c pattern(or aggregated user requests' demands) for different contents. The second part is a collaborative cache placement algorithm that is based on traffic estimated by TP2. The experimental results show that TP2 has better performance than other comparable traffi c prediction algorithms and the proposed intelligent system can increase the utilization of cache resources and improve the network capacity.展开更多
基金supported by the National High Technology Research and Development Program(863)of China(No.2015AA016101)the National Natural Science Fund(No.61300184)Beijing Nova Program(No.Z151100000315078)
文摘Information centric networking(ICN) is a new network architecture that is centred on accessing content. It aims to solve some of the problems associated with IP networks, increasing content distribution capability and improving users' experience. To analyse the requests' patterns and fully utilize the universal cached contents, a novel intelligent resources management system is proposed, which enables effi cient cache resource allocation in real time, based on changing user demand patterns. The system is composed of two parts. The fi rst part is a fi ne-grain traffi c estimation algorithm called Temporal Poisson traffi c prediction(TP2) that aims at analysing the traffi c pattern(or aggregated user requests' demands) for different contents. The second part is a collaborative cache placement algorithm that is based on traffic estimated by TP2. The experimental results show that TP2 has better performance than other comparable traffi c prediction algorithms and the proposed intelligent system can increase the utilization of cache resources and improve the network capacity.