In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage ...In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage for users in the densely populated areas.To deal with the dynamic satellite backhaul links and backhaul capacity caused by the satellite mobility, severe co-channel interference in both satellite backhaul links and user links introduced by spectrum sharing,and the difference demands of users as well as heterogeneous characteristics of terrestrial backhaul and satellite backhaul, we propose a joint user association and satellite selection scheme to maximize the total sum rate. The optimization problem is formulated via jointly considering the influence of dynamic backhaul links, individual requirements and targeted interference management strategies, which is decomposed into two subproblems: user association and satellite selection. The user association is formulated as a nonconvex optimization problem, and solved through a low-complexity heuristic scheme to find the most suitable access point serving each user. Then, the satellite selection is resolved based on the cooperation among terrestrial relays to maximize the total backhaul capacity with the minimum date rate constraints. Finally,simulation results show the effectiveness of the proposed scheme in terms of total sum rate and power efficiency of TRs' backhaul.展开更多
With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial ...With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial networks with limi-ted resources,the utilization efficiency of the entire space-terres-trial integrated networks resources can be affected by the core network indirectly.In order to improve the response efficiency of core networks expansion construction,early warning of the core network elements capacity is necessary.Based on the inte-grated architecture of space and terrestrial network,multidimen-sional factors are considered in this paper,including the number of terminals,login users,and the rules of users’migration during holidays.Using artifical intelligence(AI)technologies,the regis-tered users of the access and mobility management function(AMF),authorization users of the unified data management(UDM),protocol data unit(PDU)sessions of session manage-ment function(SMF)are predicted in combination with the num-ber of login users,the number of terminals.Therefore,the core network elements capacity can be predicted in advance.The proposed method is proven to be effective based on the data from real network.展开更多
Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-e...Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-enabled ISUAVRNs.Especially,an eve is considered to intercept the legitimate information from the considered secrecy system.Besides,we get detailed expressions for the ASC of the regarded secrecy system with the aid of the reconfigurable intelligent.Furthermore,to gain insightful results of the major parameters on the ASC in high signalto-noise ratio regime,the approximate investigations are further gotten,which give an efficient method to value the secrecy analysis.At last,some representative computer results are obtained to prove the theoretical findings.展开更多
The metropolitan area is one of the key focal points in the construction and development of China’s new urbanization.Urban integration is an emerging trend in metropolitan areas.This paper explores the traffic demand...The metropolitan area is one of the key focal points in the construction and development of China’s new urbanization.Urban integration is an emerging trend in metropolitan areas.This paper explores the traffic demand characteristics and economic aspects of rail transit within metropolitan regions and argues that the construction of an integrated urban rail transit network is an effective approach to support their development.Rail transit in metropolitan areas offers both technical and economic advantages,improving the efficiency of time and space resource utilization,fostering economic cooperation,and ultimately contributing to an integrated development model.However,the integration of rail transit networks faces several challenges,including road network planning,technical standards,and operational organization.Using the Wuhan metropolitan area as a case study,this paper analyzes the challenges of rail transit network integration and proposes strategic solutions for development.展开更多
The tight oil formation develops with microfractures and matrix pores,it is important to study the influence of matrix physical properties on flow characteristics.At first,the representative fracture and matrix sample...The tight oil formation develops with microfractures and matrix pores,it is important to study the influence of matrix physical properties on flow characteristics.At first,the representative fracture and matrix samples are selected respectively in the dual media,the fracture and matrix digital rocks are constructed with micro-CT scanning at different resolutions,and the corresponding fracture and matrix pore networks are extracted,respectively.Then,the modified integration method is proposed to build the dual network model containing both fracture and matrix pore-throat elements,while the geometric-topological structure equivalent matrix pores are generated to fill in the skeleton domain of fracture network,the constructed dual network could describe the geometric-topological structure characteristics of fracture and matrix pore-throat simultaneously.At last,by adjusting the matrix pore density and the matrix filling domain factor,a series of dual network models are obtained to analyze the influence of matrix physical properties on flow characteristics in dual-media.It can be seen that the matrix system contributes more to the porosity of the dual media and less to the permeability.With the decrease in matrix pore density,the porosity/permeability contributions of matrix system to dual media keep decreasing,but the decrease is not significant,the oil-water co-flow zone decreases and the irreducible water saturation increases,and the saturation interval dominated by the fluid flow in the fracture keeps increasing.With the decrease in matrix filling domain factor,the porosity/permeability contributions of matrix system to dual media decreases,the oil-water co-flow zone increases and the irreducible water saturation decreases,and the saturation interval dominated by the fluid flow in the fracture keeps increasing.The results can be used to explain the dual-media flow pattern under different matrix types and different fracture control volumes during tight oil production.展开更多
The ultra-dense low earth orbit(LEO)integrated satellite-terrestrial networks(UDLEO-ISTN)can bring lots of benefits in terms of wide coverage,high capacity,and strong robustness.Meanwhile,the broadcasting and open nat...The ultra-dense low earth orbit(LEO)integrated satellite-terrestrial networks(UDLEO-ISTN)can bring lots of benefits in terms of wide coverage,high capacity,and strong robustness.Meanwhile,the broadcasting and open natures of satellite links also reveal many challenges for transmission security protection,especially for eavesdropping defence.How to efficiently take advantage of the LEO satellite’s density and ensure the secure communication by leveraging physical layer security with the cooperation of jammers deserves further investigation.To our knowledge,using satellites as jammers in UDLEO-ISTN is still a new problem since existing works mainly focused on this issue only from the aspect of terrestrial networks.To this end,we study in this paper the cooperative secrecy communication problem in UDLEOISTN by utilizing several satellites to send jamming signal to the eavesdroppers.An iterative scheme is proposed as our solution to maximize the system secrecy energy efficiency(SEE)via jointly optimizing transmit power allocation and user association.Extensive experiment results verify that our designed optimization scheme can significantly enhance the system SEE and achieve the optimal power allocation and user association strategies.展开更多
The future 6G networks will integrates space and terrestrial networks to realize a fully connected world with extensive collaboration.However,how to build trust between multiple parties is a difficult problem for secu...The future 6G networks will integrates space and terrestrial networks to realize a fully connected world with extensive collaboration.However,how to build trust between multiple parties is a difficult problem for secure cooperation without a reliable third-party.Blockchain is a promising technology to solve this problem by converting the trust between multi-parties to the trust to the common shared data.Several works have proposed to apply the incentive mechanism in blockchain to encourage effective cooperation,but how to evaluate the cooperation performance and avoid breach of contract is not discussed.In this paper,a secure relay scheme is proposed based on the consortium blockchain system composed by different operators.In particular,smart contract checks the integrity of the message based on RSA accumulator,and executes transactions automatically when the message is delivered successfully.Detailed procedures are introduced for both uplink and downlink relay.Implementation based on Hyperledger Fabric proves the effectiveness of the proposed scheme and shows that the complexity of the scheme is low enough for practical deployment.展开更多
The ubiquitous and deterministic communication systems are becoming indispensable for future vertical applications such as industrial automation systems and smart grids.5G-TSN(Time-Sensitive Networking)integrated netw...The ubiquitous and deterministic communication systems are becoming indispensable for future vertical applications such as industrial automation systems and smart grids.5G-TSN(Time-Sensitive Networking)integrated networks with the 5G system(5GS)as a TSN bridge are promising to provide the required communication service.To guarantee the endto-end(E2E)QoS(Quality of Service)performance of traffic is a great challenge in 5G-TSN integrated networks.A dynamic QoS mapping method is proposed in this paper.It is based on the improved K-means clustering algorithm and the rough set theory(IKCRQM).The IKC-RQM designs a dynamic and loadaware QoS mapping algorithm to improve its flexibility.An adaptive semi-persistent scheduling(ASPS)mechanism is proposed to solve the challenging deterministic scheduling in 5GS.It includes two parts:one part is the persistent resource allocation for timesensitive flows,and the other part is the dynamic resource allocation based on the max-min fair share algorithm.Simulation results show that the proposed IKC-RQM algorithm achieves flexible and appropriate QoS mapping,and the ASPS performs corresponding resource allocations to guarantee the deterministic transmissions of time-sensitive flows in 5G-TSN integrated networks.展开更多
Terminal devices deployed in outdoor environments are facing a thorny problem of power supply.Data and energy integrated network(DEIN)is a promising technology to solve the problem,which simultaneously transfers data ...Terminal devices deployed in outdoor environments are facing a thorny problem of power supply.Data and energy integrated network(DEIN)is a promising technology to solve the problem,which simultaneously transfers data and energy through radio frequency signals.State-of-the-art researches mostly focus on theoretical aspects.By contrast,we provide a complete design and implementation of a fully functioning DEIN system with the support of an unmanned aerial vehicle(UAV).The UAV can be dispatched to areas of interest to remotely recharge batteryless terminals,while collecting essential information from them.Then,the UAV uploads the information to remote base stations.Our system verifies the feasibility of the DEIN in practical applications.展开更多
As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT network...As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT networks,and the Space-Air-Ground integrated network(SAGIN)holds promise.We propose a novel setup that integrates non-orthogonal multiple access(NOMA)and wireless power transfer(WPT)to collect latency-sensitive data from IoRT networks.To extend the lifetime of devices,we aim to minimize the maximum energy consumption among all IoRT devices.Due to the coupling between variables,the resulting problem is non-convex.We first decouple the variables and split the original problem into four subproblems.Then,we propose an iterative algorithm to solve the corresponding subproblems based on successive convex approximation(SCA)techniques and slack variables.Finally,simulation results show that the NOMA strategy has a tremendous advantage over the OMA scheme in terms of network lifetime and energy efficiency,providing valuable insights.展开更多
"…enable Jiangxi to become the example of ecological civilization and pacesetter of building beautiful China,and realize the dream of a prosperous,harmonious and beautiful Jiangxi through our earnest efforts.&qu..."…enable Jiangxi to become the example of ecological civilization and pacesetter of building beautiful China,and realize the dream of a prosperous,harmonious and beautiful Jiangxi through our earnest efforts."Recent years have witnessed vigorous efforts made by the Provincial Foreign Affairs and Overseas Chinese展开更多
In recent years,Internet of Things(IoT)technology has emerged and gradually sprung up.As the needs of largescale IoT applications cannot be satisfied by the fifth generation(5G)network,wireless communication network n...In recent years,Internet of Things(IoT)technology has emerged and gradually sprung up.As the needs of largescale IoT applications cannot be satisfied by the fifth generation(5G)network,wireless communication network needs to be developed into the sixth generation(6G)network.However,with the increasingly prominent security problems of wireless communication networks such as 6G,covert communication has been recognized as one of the most promising solutions.Covert communication can realize the transmission of hidden information between both sides of communication to a certain extent,which makes the transmission content and transmission behavior challenging to be detected by noncooperative eavesdroppers.In addition,the integrated high altitude platform station(HAPS)terrestrial network is considered a promising development direction because of its flexibility and scalability.Based on the above facts,this article investigates the covert communication in an integrated HAPS terrestrial network,where a constant power auxiliary node is utilized to send artificial noise(AN)to realize the covert communication.Specifically,the covert constraint relationship between the transmitting and auxiliary nodes is derived.Moreover,the closed-form expressions of outage probability(OP)and effective covert communication rate are obtained.Finally,numerical results are provided to verify our analysis and reveal the impacts of critical parameters on the system performance.展开更多
Financing of the African Integrated High-Speed Railway Network (AIHSRN) through Standard Gauge Railway (SGR) Projects is very expensive. As a result, most of the African countries seek financial supports from the Inte...Financing of the African Integrated High-Speed Railway Network (AIHSRN) through Standard Gauge Railway (SGR) Projects is very expensive. As a result, most of the African countries seek financial supports from the International Financial Institutions (IFIs). However, conditions provided by the IFIs through the Performance Standards (PS) of the International Financial Corporation (IFC) increase cost of the projects and thus, it becomes a burden to most of the African countries. This study aimed to explore the causes of IFC-PS through the SGR Projects that escalate costs and how to address them. The Tanzania SGR Lot 1 Project that covered 205 km from Dar es Salaam to Morogoro was selected as a case study. The methods used for data collection involved literature review, focus group discussions and interviews. The results and findings show a gap between the IFC-PS and the National Laws and Regulations that escalates costs of the projects if funds from the IFIs were to be secured. To bridge the gap, it is recommended that the African countries should engage into negotiations with the IFIs to agree to waive IFC-PS conditions that escalate costs provided they are adequately covered in the national laws and regulations;engagement of locally established national and regional financial institutions;and the responsible government institutions in the African countries should sit together for assessment and review of the IFC-PS against the national laws and regulations.展开更多
In this paper,we investigate the secrecy outage performance for the two-way integrated satellite unmanned aerial vehicle relay networks with hardware impairments.Particularly,the closed-form expression for the secrecy...In this paper,we investigate the secrecy outage performance for the two-way integrated satellite unmanned aerial vehicle relay networks with hardware impairments.Particularly,the closed-form expression for the secrecy outage probability is obtained.Moreover,to get more information on the secrecy outage probability in a high signalto-noise regime,the asymptotic analysis along with the secrecy diversity order and secrecy coding gain for the secrecy outage probability are also further obtained,which presents a fast method to evaluate the impact of system parameters and hardware impairments on the considered network.Finally,Monte Carlo simulation results are provided to show the efficiency of the theoretical analysis.展开更多
According to the operational characteristics of the logistics networks for the third party logistics supplier (3PLS), the forward and reverse logistics networks together for 3PLS under the uncertain environment are ...According to the operational characteristics of the logistics networks for the third party logistics supplier (3PLS), the forward and reverse logistics networks together for 3PLS under the uncertain environment are designed. First, a fuzzy model is proposed by taking multiple customers, multiple commodities, capacitated facility location and integrated logistics facility layout into account. In the model, the fuzzy customer demands and transportation rates are illustrated by triangular fuzzy numbers. Secondly, the fuzzy model is converted into a crisp model by applying fuzzy chance constrained theory and possibility theory, and one hybrid genetic algorithm is designed for the crisp model. Finally, two different examples are designed to illustrate that the model and solution discussed are valid.展开更多
Space/air communications have been envisioned as an essential part of the next-generation mobile communication networks for providing highquality global connectivity. However, the inherent broadcasting nature of wirel...Space/air communications have been envisioned as an essential part of the next-generation mobile communication networks for providing highquality global connectivity. However, the inherent broadcasting nature of wireless propagation environment and the broad coverage pose severe threats to the protection of private data. Emerging covert communications provides a promising solution to achieve robust communication security. Aiming at facilitating the practical implementation of covert communications in space/air networks, we present a tutorial overview of its potentials, scenarios, and key technologies. Specifically, first, the commonly used covertness constraint model, covert performance metrics, and potential application scenarios are briefly introduced. Then, several efficient methods that introduce uncertainty into the covert system are thoroughly summarized, followed by several critical enabling technologies, including joint resource allocation and deployment/trajectory design, multi-antenna and beamforming techniques, reconfigurable intelligent surface(RIS), and artificial intelligence algorithms. Finally, we highlight some open issues for future investigation.展开更多
An analytical approach to evaluate the performance of the 3G/ad hoc integrated network is presented. A channel model capturing both path loss and shadowing is applied to the analysis so as to characterize power fallof...An analytical approach to evaluate the performance of the 3G/ad hoc integrated network is presented. A channel model capturing both path loss and shadowing is applied to the analysis so as to characterize power falloff vs. distance. The 3G/ad hoc integrated network scenario model is introduced briefly. Based on this model, several performances of the 3G/ ad hoc integrated network in terms of outage probability, call dropping probability and new call blocking probability are evaluated. The corresponding performance formulae are deduced in accordance with the analytical models. Meanwhile, the formula of the 3G/ad hoc integrated network capacity is deduced on the basis of the formula of the outage probability. It is observed from extensive simulation and numerical analysis that the 3G/ad hoc integrated network remarkably outperforms the 3G network with regards to the network performance. This derived evaluation approach can be applied into planning and optimization of the 3G/ad hoc network.展开更多
The space-air-ground integrated network(SAGIN) is regarded as the key approach to realize global coverage in future network and it reaches broad access for various services. Being the new paradigm of service, immersiv...The space-air-ground integrated network(SAGIN) is regarded as the key approach to realize global coverage in future network and it reaches broad access for various services. Being the new paradigm of service, immersive media(IM) has attracted users’ attention for its virtualization, but it poses challenges to network performance, e.g. bandwidth, rate, latency. However, the SAGIN has limitations in supporting IM services, such as 4 K/8 K video, virtual reality, and interactive games. In this paper, a novel service customized SAGIN architecture for IM applications(SAG-IM) is proposed, which achieves content interactive and real-time communication among terminal users. State-of-the-art research is investigated in detail to facilitate the combination of SAGIN and service customized technology, which provides endto-end differentiated services for users. Besides, the functional components of SAG-IM contain the infrastructure layer, perception layer, intelligence layer, and application layer, reaching the capabilities of intelligent management of the network. Moreover, to provide IM content with ultra-high-definition and high frame rate for the optimal user experience, the promising key technologies on intelligent routing and delivery are discussed. The performance evaluation shows the superiority of SAG-IM in supporting IM service.Finally, the prospects in practical application are high-lighted.展开更多
An important vision of next generation mobile system is to provide global internet access.The Space-Terrestrial Integrated Network(STIN)has been proposed and intensively studied to tackle this challenge.Due to the sev...An important vision of next generation mobile system is to provide global internet access.The Space-Terrestrial Integrated Network(STIN)has been proposed and intensively studied to tackle this challenge.Due to the severe attenuation of radio signals in water,the STIN cannot be directly applied in underwater scenarios.In this paper we envision a framework of integrated radio-acoustic network arming at high-efficient data transmission in underwater scenarios,where acoustic signal is for underwater communication and radio signal is for surface and air communications.Since radio links have much higher data transmission rate and lower delay,in the integrated radio-acoustic network,the acoustic links easily become congested,at the same time the radio links are not fully utilized.We therefore propose that the integrated radio-acoustic network should be properly designed to minimize the hop count of acoustic links,as well as the signaling overhead in the acoustic subnetwork.We then present a novel network framework and the relative technologies to help moving the signaling overhead to the radio subnetwork.展开更多
The Space-Air-Ground Integrated Network(SAGIN) realizes the integration of space, air,and ground networks, obtaining the global communication coverage.Software-Defined Networking(SDN) architecture in SAGIN has become ...The Space-Air-Ground Integrated Network(SAGIN) realizes the integration of space, air,and ground networks, obtaining the global communication coverage.Software-Defined Networking(SDN) architecture in SAGIN has become a promising solution to guarantee the Quality of Service(QoS).However, the current routing algorithms mainly focus on the QoS of the service, rarely considering the security requirement of flow. To realize the secure transmission of flows in SAGIN, we propose an intelligent flow forwarding scheme with endogenous security based on Mimic Defense(ESMD-Flow). In this scheme, SDN controller will evaluate the reliability of nodes and links, isolate malicious nodes based on the reliability evaluation value, and adapt multipath routing strategy to ensure that flows are always forwarded along the most reliable multiple paths. In addition, in order to meet the security requirement of flows, we introduce the programming data plane to design a multiprotocol forwarding strategy for realizing the multiprotocol dynamic forwarding of flows. ESMD-Flow can reduce the network attack surface and improve the secure transmission capability of flows by implementing multipath routing and multi-protocol hybrid forwarding mechanism. The extensive simulations demonstrate that ESMD-Flow can significantly improve the average path reliability for routing and increase the difficulty of network eavesdropping while improving the network throughput and reducing the average packet delay.展开更多
基金supported by National Natural Science Foundation of China (No. 62201593, 62471480, and 62171466)。
文摘In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage for users in the densely populated areas.To deal with the dynamic satellite backhaul links and backhaul capacity caused by the satellite mobility, severe co-channel interference in both satellite backhaul links and user links introduced by spectrum sharing,and the difference demands of users as well as heterogeneous characteristics of terrestrial backhaul and satellite backhaul, we propose a joint user association and satellite selection scheme to maximize the total sum rate. The optimization problem is formulated via jointly considering the influence of dynamic backhaul links, individual requirements and targeted interference management strategies, which is decomposed into two subproblems: user association and satellite selection. The user association is formulated as a nonconvex optimization problem, and solved through a low-complexity heuristic scheme to find the most suitable access point serving each user. Then, the satellite selection is resolved based on the cooperation among terrestrial relays to maximize the total backhaul capacity with the minimum date rate constraints. Finally,simulation results show the effectiveness of the proposed scheme in terms of total sum rate and power efficiency of TRs' backhaul.
基金This work was supported by the National Key Research Plan(2021YFB2900602).
文摘With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial networks with limi-ted resources,the utilization efficiency of the entire space-terres-trial integrated networks resources can be affected by the core network indirectly.In order to improve the response efficiency of core networks expansion construction,early warning of the core network elements capacity is necessary.Based on the inte-grated architecture of space and terrestrial network,multidimen-sional factors are considered in this paper,including the number of terminals,login users,and the rules of users’migration during holidays.Using artifical intelligence(AI)technologies,the regis-tered users of the access and mobility management function(AMF),authorization users of the unified data management(UDM),protocol data unit(PDU)sessions of session manage-ment function(SMF)are predicted in combination with the num-ber of login users,the number of terminals.Therefore,the core network elements capacity can be predicted in advance.The proposed method is proven to be effective based on the data from real network.
基金the National Natural Science Foundation of China under Grants 62001517 and 61971474the Beijing Nova Program under Grant Z201100006820121.
文摘Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-enabled ISUAVRNs.Especially,an eve is considered to intercept the legitimate information from the considered secrecy system.Besides,we get detailed expressions for the ASC of the regarded secrecy system with the aid of the reconfigurable intelligent.Furthermore,to gain insightful results of the major parameters on the ASC in high signalto-noise ratio regime,the approximate investigations are further gotten,which give an efficient method to value the secrecy analysis.At last,some representative computer results are obtained to prove the theoretical findings.
基金The Research Fund of Jianghan University(Project No.2021yb096)Hubei Social Science Foundation Project“Research on the Relationship between Rail Transit and Intensive and Sustainable Development of Large Cities”(Project No.2020052)。
文摘The metropolitan area is one of the key focal points in the construction and development of China’s new urbanization.Urban integration is an emerging trend in metropolitan areas.This paper explores the traffic demand characteristics and economic aspects of rail transit within metropolitan regions and argues that the construction of an integrated urban rail transit network is an effective approach to support their development.Rail transit in metropolitan areas offers both technical and economic advantages,improving the efficiency of time and space resource utilization,fostering economic cooperation,and ultimately contributing to an integrated development model.However,the integration of rail transit networks faces several challenges,including road network planning,technical standards,and operational organization.Using the Wuhan metropolitan area as a case study,this paper analyzes the challenges of rail transit network integration and proposes strategic solutions for development.
基金This work was supported by National Natural Science Foundation of China(No.51704033,No.51804038)PetroChina Innovation Foundation(No.2018D-5007-0210).
文摘The tight oil formation develops with microfractures and matrix pores,it is important to study the influence of matrix physical properties on flow characteristics.At first,the representative fracture and matrix samples are selected respectively in the dual media,the fracture and matrix digital rocks are constructed with micro-CT scanning at different resolutions,and the corresponding fracture and matrix pore networks are extracted,respectively.Then,the modified integration method is proposed to build the dual network model containing both fracture and matrix pore-throat elements,while the geometric-topological structure equivalent matrix pores are generated to fill in the skeleton domain of fracture network,the constructed dual network could describe the geometric-topological structure characteristics of fracture and matrix pore-throat simultaneously.At last,by adjusting the matrix pore density and the matrix filling domain factor,a series of dual network models are obtained to analyze the influence of matrix physical properties on flow characteristics in dual-media.It can be seen that the matrix system contributes more to the porosity of the dual media and less to the permeability.With the decrease in matrix pore density,the porosity/permeability contributions of matrix system to dual media keep decreasing,but the decrease is not significant,the oil-water co-flow zone decreases and the irreducible water saturation increases,and the saturation interval dominated by the fluid flow in the fracture keeps increasing.With the decrease in matrix filling domain factor,the porosity/permeability contributions of matrix system to dual media decreases,the oil-water co-flow zone increases and the irreducible water saturation decreases,and the saturation interval dominated by the fluid flow in the fracture keeps increasing.The results can be used to explain the dual-media flow pattern under different matrix types and different fracture control volumes during tight oil production.
基金supported by National Key R&D Program of China(2022YFB3104200)in part by National Natural Science Foundation of China(62202386)+6 种基金in part by Basic Research Programs of Taicang(TC2021JC31)in part by Fundamental Research Funds for the Central Universities(D5000210817)in part by Xi’an Unmanned System Security and Intelligent Communications ISTC Centerin part by Special Funds for Central Universities Construction of World-Class Universities(Disciplines)and Special Development Guidance(0639022GH0202237 and 0639022SH0201237)in part by the Henan Key Scientific Research Program of Higher Education(23B510003,21A510008 and 21A510009)in part by Henan Key Scientific and Technological Projects(212102210553)。
文摘The ultra-dense low earth orbit(LEO)integrated satellite-terrestrial networks(UDLEO-ISTN)can bring lots of benefits in terms of wide coverage,high capacity,and strong robustness.Meanwhile,the broadcasting and open natures of satellite links also reveal many challenges for transmission security protection,especially for eavesdropping defence.How to efficiently take advantage of the LEO satellite’s density and ensure the secure communication by leveraging physical layer security with the cooperation of jammers deserves further investigation.To our knowledge,using satellites as jammers in UDLEO-ISTN is still a new problem since existing works mainly focused on this issue only from the aspect of terrestrial networks.To this end,we study in this paper the cooperative secrecy communication problem in UDLEOISTN by utilizing several satellites to send jamming signal to the eavesdroppers.An iterative scheme is proposed as our solution to maximize the system secrecy energy efficiency(SEE)via jointly optimizing transmit power allocation and user association.Extensive experiment results verify that our designed optimization scheme can significantly enhance the system SEE and achieve the optimal power allocation and user association strategies.
基金supported by National Key Research and Development Program of Chain(No.2021YFE0205300)National Natural Science Foundation of China(No.62171313).
文摘The future 6G networks will integrates space and terrestrial networks to realize a fully connected world with extensive collaboration.However,how to build trust between multiple parties is a difficult problem for secure cooperation without a reliable third-party.Blockchain is a promising technology to solve this problem by converting the trust between multi-parties to the trust to the common shared data.Several works have proposed to apply the incentive mechanism in blockchain to encourage effective cooperation,but how to evaluate the cooperation performance and avoid breach of contract is not discussed.In this paper,a secure relay scheme is proposed based on the consortium blockchain system composed by different operators.In particular,smart contract checks the integrity of the message based on RSA accumulator,and executes transactions automatically when the message is delivered successfully.Detailed procedures are introduced for both uplink and downlink relay.Implementation based on Hyperledger Fabric proves the effectiveness of the proposed scheme and shows that the complexity of the scheme is low enough for practical deployment.
基金supported by National Key Research and Development Project under Grant No.2020YFB1710900Sichuan International Cooperation Project of Science and Technology Innovation under Grant No.2022YFH0022。
文摘The ubiquitous and deterministic communication systems are becoming indispensable for future vertical applications such as industrial automation systems and smart grids.5G-TSN(Time-Sensitive Networking)integrated networks with the 5G system(5GS)as a TSN bridge are promising to provide the required communication service.To guarantee the endto-end(E2E)QoS(Quality of Service)performance of traffic is a great challenge in 5G-TSN integrated networks.A dynamic QoS mapping method is proposed in this paper.It is based on the improved K-means clustering algorithm and the rough set theory(IKCRQM).The IKC-RQM designs a dynamic and loadaware QoS mapping algorithm to improve its flexibility.An adaptive semi-persistent scheduling(ASPS)mechanism is proposed to solve the challenging deterministic scheduling in 5GS.It includes two parts:one part is the persistent resource allocation for timesensitive flows,and the other part is the dynamic resource allocation based on the max-min fair share algorithm.Simulation results show that the proposed IKC-RQM algorithm achieves flexible and appropriate QoS mapping,and the ASPS performs corresponding resource allocations to guarantee the deterministic transmissions of time-sensitive flows in 5G-TSN integrated networks.
基金partly funded by Natural Science Foundation of China(No.61971102 and 62132004)Sichuan Science and Technology Program(No.22QYCX0168)the Municipal Government of Quzhou(Grant No.2021D003)。
文摘Terminal devices deployed in outdoor environments are facing a thorny problem of power supply.Data and energy integrated network(DEIN)is a promising technology to solve the problem,which simultaneously transfers data and energy through radio frequency signals.State-of-the-art researches mostly focus on theoretical aspects.By contrast,we provide a complete design and implementation of a fully functioning DEIN system with the support of an unmanned aerial vehicle(UAV).The UAV can be dispatched to areas of interest to remotely recharge batteryless terminals,while collecting essential information from them.Then,the UAV uploads the information to remote base stations.Our system verifies the feasibility of the DEIN in practical applications.
基金supported by National Natural Science Foundation of China(No.62171158)the project“The Major Key Project of PCL(PCL2021A03-1)”from Peng Cheng Laboratorysupported by the Science and the Research Fund Program of Guangdong Key Laboratory of Aerospace Communication and Networking Technology(2018B030322004).
文摘As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT networks,and the Space-Air-Ground integrated network(SAGIN)holds promise.We propose a novel setup that integrates non-orthogonal multiple access(NOMA)and wireless power transfer(WPT)to collect latency-sensitive data from IoRT networks.To extend the lifetime of devices,we aim to minimize the maximum energy consumption among all IoRT devices.Due to the coupling between variables,the resulting problem is non-convex.We first decouple the variables and split the original problem into four subproblems.Then,we propose an iterative algorithm to solve the corresponding subproblems based on successive convex approximation(SCA)techniques and slack variables.Finally,simulation results show that the NOMA strategy has a tremendous advantage over the OMA scheme in terms of network lifetime and energy efficiency,providing valuable insights.
文摘"…enable Jiangxi to become the example of ecological civilization and pacesetter of building beautiful China,and realize the dream of a prosperous,harmonious and beautiful Jiangxi through our earnest efforts."Recent years have witnessed vigorous efforts made by the Provincial Foreign Affairs and Overseas Chinese
基金supported by the National Science Foundation of China under Grant 62001517in part by the Research Project of Space Engineering University under Grants 2020XXAQ01 and 2019XXAQ05,and in part by the Science and Technology Innovation Cultivation Fund of Space Engineering University.
文摘In recent years,Internet of Things(IoT)technology has emerged and gradually sprung up.As the needs of largescale IoT applications cannot be satisfied by the fifth generation(5G)network,wireless communication network needs to be developed into the sixth generation(6G)network.However,with the increasingly prominent security problems of wireless communication networks such as 6G,covert communication has been recognized as one of the most promising solutions.Covert communication can realize the transmission of hidden information between both sides of communication to a certain extent,which makes the transmission content and transmission behavior challenging to be detected by noncooperative eavesdroppers.In addition,the integrated high altitude platform station(HAPS)terrestrial network is considered a promising development direction because of its flexibility and scalability.Based on the above facts,this article investigates the covert communication in an integrated HAPS terrestrial network,where a constant power auxiliary node is utilized to send artificial noise(AN)to realize the covert communication.Specifically,the covert constraint relationship between the transmitting and auxiliary nodes is derived.Moreover,the closed-form expressions of outage probability(OP)and effective covert communication rate are obtained.Finally,numerical results are provided to verify our analysis and reveal the impacts of critical parameters on the system performance.
文摘Financing of the African Integrated High-Speed Railway Network (AIHSRN) through Standard Gauge Railway (SGR) Projects is very expensive. As a result, most of the African countries seek financial supports from the International Financial Institutions (IFIs). However, conditions provided by the IFIs through the Performance Standards (PS) of the International Financial Corporation (IFC) increase cost of the projects and thus, it becomes a burden to most of the African countries. This study aimed to explore the causes of IFC-PS through the SGR Projects that escalate costs and how to address them. The Tanzania SGR Lot 1 Project that covered 205 km from Dar es Salaam to Morogoro was selected as a case study. The methods used for data collection involved literature review, focus group discussions and interviews. The results and findings show a gap between the IFC-PS and the National Laws and Regulations that escalates costs of the projects if funds from the IFIs were to be secured. To bridge the gap, it is recommended that the African countries should engage into negotiations with the IFIs to agree to waive IFC-PS conditions that escalate costs provided they are adequately covered in the national laws and regulations;engagement of locally established national and regional financial institutions;and the responsible government institutions in the African countries should sit together for assessment and review of the IFC-PS against the national laws and regulations.
基金supported by the Natural Science Foundation of China under Grant No.62001517.
文摘In this paper,we investigate the secrecy outage performance for the two-way integrated satellite unmanned aerial vehicle relay networks with hardware impairments.Particularly,the closed-form expression for the secrecy outage probability is obtained.Moreover,to get more information on the secrecy outage probability in a high signalto-noise regime,the asymptotic analysis along with the secrecy diversity order and secrecy coding gain for the secrecy outage probability are also further obtained,which presents a fast method to evaluate the impact of system parameters and hardware impairments on the considered network.Finally,Monte Carlo simulation results are provided to show the efficiency of the theoretical analysis.
文摘According to the operational characteristics of the logistics networks for the third party logistics supplier (3PLS), the forward and reverse logistics networks together for 3PLS under the uncertain environment are designed. First, a fuzzy model is proposed by taking multiple customers, multiple commodities, capacitated facility location and integrated logistics facility layout into account. In the model, the fuzzy customer demands and transportation rates are illustrated by triangular fuzzy numbers. Secondly, the fuzzy model is converted into a crisp model by applying fuzzy chance constrained theory and possibility theory, and one hybrid genetic algorithm is designed for the crisp model. Finally, two different examples are designed to illustrate that the model and solution discussed are valid.
基金supported in part by the National Natural Science Foundation of China(NSFC)under grant numbers U22A2007 and 62171010the Beijing Natural Science Foundation under grant number L212003.
文摘Space/air communications have been envisioned as an essential part of the next-generation mobile communication networks for providing highquality global connectivity. However, the inherent broadcasting nature of wireless propagation environment and the broad coverage pose severe threats to the protection of private data. Emerging covert communications provides a promising solution to achieve robust communication security. Aiming at facilitating the practical implementation of covert communications in space/air networks, we present a tutorial overview of its potentials, scenarios, and key technologies. Specifically, first, the commonly used covertness constraint model, covert performance metrics, and potential application scenarios are briefly introduced. Then, several efficient methods that introduce uncertainty into the covert system are thoroughly summarized, followed by several critical enabling technologies, including joint resource allocation and deployment/trajectory design, multi-antenna and beamforming techniques, reconfigurable intelligent surface(RIS), and artificial intelligence algorithms. Finally, we highlight some open issues for future investigation.
基金The National Natural Science Foundation of China(No.60872004)the Research Fund of National Mobile Communications Research Laboratory of Southeast University(No.2010A08)the Fundamental Research Funds for the Central Universities(No.2009B21814)
文摘An analytical approach to evaluate the performance of the 3G/ad hoc integrated network is presented. A channel model capturing both path loss and shadowing is applied to the analysis so as to characterize power falloff vs. distance. The 3G/ad hoc integrated network scenario model is introduced briefly. Based on this model, several performances of the 3G/ ad hoc integrated network in terms of outage probability, call dropping probability and new call blocking probability are evaluated. The corresponding performance formulae are deduced in accordance with the analytical models. Meanwhile, the formula of the 3G/ad hoc integrated network capacity is deduced on the basis of the formula of the outage probability. It is observed from extensive simulation and numerical analysis that the 3G/ad hoc integrated network remarkably outperforms the 3G network with regards to the network performance. This derived evaluation approach can be applied into planning and optimization of the 3G/ad hoc network.
基金supported by the National Key Research and Development Program of China (No.2019YFB1803103)in part by the BUPT Excellent Ph.D. Students Foundation (No.CX2021113)。
文摘The space-air-ground integrated network(SAGIN) is regarded as the key approach to realize global coverage in future network and it reaches broad access for various services. Being the new paradigm of service, immersive media(IM) has attracted users’ attention for its virtualization, but it poses challenges to network performance, e.g. bandwidth, rate, latency. However, the SAGIN has limitations in supporting IM services, such as 4 K/8 K video, virtual reality, and interactive games. In this paper, a novel service customized SAGIN architecture for IM applications(SAG-IM) is proposed, which achieves content interactive and real-time communication among terminal users. State-of-the-art research is investigated in detail to facilitate the combination of SAGIN and service customized technology, which provides endto-end differentiated services for users. Besides, the functional components of SAG-IM contain the infrastructure layer, perception layer, intelligence layer, and application layer, reaching the capabilities of intelligent management of the network. Moreover, to provide IM content with ultra-high-definition and high frame rate for the optimal user experience, the promising key technologies on intelligent routing and delivery are discussed. The performance evaluation shows the superiority of SAG-IM in supporting IM service.Finally, the prospects in practical application are high-lighted.
基金the National Key Research and Development Program of China under grant 2020YFB1807700the National Natural Science Foundation of China under Grants U1701265,U1809211Key Program of Marine Economy Development,Department of Natural Resources of Guangdong Province under Grant YZRZH[2020]009。
文摘An important vision of next generation mobile system is to provide global internet access.The Space-Terrestrial Integrated Network(STIN)has been proposed and intensively studied to tackle this challenge.Due to the severe attenuation of radio signals in water,the STIN cannot be directly applied in underwater scenarios.In this paper we envision a framework of integrated radio-acoustic network arming at high-efficient data transmission in underwater scenarios,where acoustic signal is for underwater communication and radio signal is for surface and air communications.Since radio links have much higher data transmission rate and lower delay,in the integrated radio-acoustic network,the acoustic links easily become congested,at the same time the radio links are not fully utilized.We therefore propose that the integrated radio-acoustic network should be properly designed to minimize the hop count of acoustic links,as well as the signaling overhead in the acoustic subnetwork.We then present a novel network framework and the relative technologies to help moving the signaling overhead to the radio subnetwork.
基金supported by the National Key Research and Development Program of China under Grant 2020YFB1804803the National Natural Science Foundation of China under Grant 61872382the Research and Development Program in Key Areas of Guangdong Province under Grant No.2018B010113001。
文摘The Space-Air-Ground Integrated Network(SAGIN) realizes the integration of space, air,and ground networks, obtaining the global communication coverage.Software-Defined Networking(SDN) architecture in SAGIN has become a promising solution to guarantee the Quality of Service(QoS).However, the current routing algorithms mainly focus on the QoS of the service, rarely considering the security requirement of flow. To realize the secure transmission of flows in SAGIN, we propose an intelligent flow forwarding scheme with endogenous security based on Mimic Defense(ESMD-Flow). In this scheme, SDN controller will evaluate the reliability of nodes and links, isolate malicious nodes based on the reliability evaluation value, and adapt multipath routing strategy to ensure that flows are always forwarded along the most reliable multiple paths. In addition, in order to meet the security requirement of flows, we introduce the programming data plane to design a multiprotocol forwarding strategy for realizing the multiprotocol dynamic forwarding of flows. ESMD-Flow can reduce the network attack surface and improve the secure transmission capability of flows by implementing multipath routing and multi-protocol hybrid forwarding mechanism. The extensive simulations demonstrate that ESMD-Flow can significantly improve the average path reliability for routing and increase the difficulty of network eavesdropping while improving the network throughput and reducing the average packet delay.