The Internet has become an important channel for college students to acquire knowledge and information.However,network has a negative effect on their healthy growth.The chord-network alienation arises,which is incoord...The Internet has become an important channel for college students to acquire knowledge and information.However,network has a negative effect on their healthy growth.The chord-network alienation arises,which is incoordinated with the rapid development of computer network technology.Based on the analysis of network alienation effect on college students’mental health,this paper put forward the corresponding solution countermeasures from three aspects.展开更多
为了对学生异常行为的早期感知及校园行为时序建模,提出一种异常行为敏感的学生行为时序建模及心理健康预测(student behavioral temporal modeling sensitive to abnormal behavior for mental health prediction, SBTM-SABMHP)方法,...为了对学生异常行为的早期感知及校园行为时序建模,提出一种异常行为敏感的学生行为时序建模及心理健康预测(student behavioral temporal modeling sensitive to abnormal behavior for mental health prediction, SBTM-SABMHP)方法,利用移动设备收集的加速器、声音传感器及移动热点(wireless fidelity, WI-FI)等多种行为感知数据,构建异质信息网络,对学生当前行为模式进行建模。同时,为实现对学生历史行为时序数据的建模,建立了基于注意力机制的异常行为敏感的门控模块,有效融合学生长短期行为,并对学生行为时序建模,实现心理健康预测。在公共数据集StudentLife上对所提出的模型进行了对比分析实验。实验结果表明,与多种学生心理健康预测基线方法相比,该方法在4个评价指标上都取得了最佳性能,证明了该模型在学生心理健康预测任务上的有效性。展开更多
文摘The Internet has become an important channel for college students to acquire knowledge and information.However,network has a negative effect on their healthy growth.The chord-network alienation arises,which is incoordinated with the rapid development of computer network technology.Based on the analysis of network alienation effect on college students’mental health,this paper put forward the corresponding solution countermeasures from three aspects.
文摘为了对学生异常行为的早期感知及校园行为时序建模,提出一种异常行为敏感的学生行为时序建模及心理健康预测(student behavioral temporal modeling sensitive to abnormal behavior for mental health prediction, SBTM-SABMHP)方法,利用移动设备收集的加速器、声音传感器及移动热点(wireless fidelity, WI-FI)等多种行为感知数据,构建异质信息网络,对学生当前行为模式进行建模。同时,为实现对学生历史行为时序数据的建模,建立了基于注意力机制的异常行为敏感的门控模块,有效融合学生长短期行为,并对学生行为时序建模,实现心理健康预测。在公共数据集StudentLife上对所提出的模型进行了对比分析实验。实验结果表明,与多种学生心理健康预测基线方法相比,该方法在4个评价指标上都取得了最佳性能,证明了该模型在学生心理健康预测任务上的有效性。