Cellular networks are overloaded due to the mobile traffic surge,and mobile social networks(MSNets) can be leveraged for traffic offloading.In this paper,we study the issue of choosing seed users for maximizing the mo...Cellular networks are overloaded due to the mobile traffic surge,and mobile social networks(MSNets) can be leveraged for traffic offloading.In this paper,we study the issue of choosing seed users for maximizing the mobile traffic offloaded from cellular networks.We introduce a gossip-style social cascade(GSC) model to model the epidemic-like information diffusion process in MSNets.For static-case and mobile-case networks,we establish an equivalent view and a temporal mapping of the information diffusion process,respectively.We further prove the submodularity in the information diffusion and propose a greedy algorithm to choose the seed users for traffic offloading,yielding a sub-optimal solution to the NP-hard traffic offloading maximization(TOM) problem.Experiments are carried out to study the offloading performance,illustrating that the greedy algorithm significantly outperforms the heuristic and random algorithms,and user mobility can help further reduce cellular load.展开更多
To cope with the explosive data demands, offloading cellular traffic through mobile social networks(MSNs) has become a promising approach to alleviate traffic load. Indeed, the repeated data transmission results in ...To cope with the explosive data demands, offloading cellular traffic through mobile social networks(MSNs) has become a promising approach to alleviate traffic load. Indeed, the repeated data transmission results in a great deal of unnecessary traffic. Existing solutions generally adopt proactive caching and achieve traffic shifting by exploiting opportunistic contacts. The key challenge to maximize the offloading utility needs leveraging the trade-off between the offloaded traffic and the users' delay requirement. Since current caching scheme rarely address this challenge, in this paper, we first quantitatively interpret the offloading revenues on the cellular operator side associated with the scale of caching users, then develop a centralized caching protocol to maximize the offloading revenues, which includes the selective algorithm of caching location based on set-cover, the cached-data dissemination strategy based on multi-path routing and the cache replacement policy based on data popularity. The experimental results on real-world mobility traces show that the proposed caching protocol outperforms existing schemes in offloading scenario.展开更多
基金supported by the National Basic Research Program of China(973 Program) through grant 2012CB316004the Doctoral Program of Higher Education(SRFDP)+1 种基金Research Grants Council Earmarked Research Grants(RGC ERG) Joint Research Scheme through Specialized Research Fund 20133402140001National Natural Science Foundation of China through grant 61379003
文摘Cellular networks are overloaded due to the mobile traffic surge,and mobile social networks(MSNets) can be leveraged for traffic offloading.In this paper,we study the issue of choosing seed users for maximizing the mobile traffic offloaded from cellular networks.We introduce a gossip-style social cascade(GSC) model to model the epidemic-like information diffusion process in MSNets.For static-case and mobile-case networks,we establish an equivalent view and a temporal mapping of the information diffusion process,respectively.We further prove the submodularity in the information diffusion and propose a greedy algorithm to choose the seed users for traffic offloading,yielding a sub-optimal solution to the NP-hard traffic offloading maximization(TOM) problem.Experiments are carried out to study the offloading performance,illustrating that the greedy algorithm significantly outperforms the heuristic and random algorithms,and user mobility can help further reduce cellular load.
基金supported by the National Natural Science Foundation of China (61372117)
文摘To cope with the explosive data demands, offloading cellular traffic through mobile social networks(MSNs) has become a promising approach to alleviate traffic load. Indeed, the repeated data transmission results in a great deal of unnecessary traffic. Existing solutions generally adopt proactive caching and achieve traffic shifting by exploiting opportunistic contacts. The key challenge to maximize the offloading utility needs leveraging the trade-off between the offloaded traffic and the users' delay requirement. Since current caching scheme rarely address this challenge, in this paper, we first quantitatively interpret the offloading revenues on the cellular operator side associated with the scale of caching users, then develop a centralized caching protocol to maximize the offloading revenues, which includes the selective algorithm of caching location based on set-cover, the cached-data dissemination strategy based on multi-path routing and the cache replacement policy based on data popularity. The experimental results on real-world mobility traces show that the proposed caching protocol outperforms existing schemes in offloading scenario.