针对Stewart平台的六自由度(six degrees of freedom,6-DOF)轨迹跟踪问题,提出一种基于神经网络的非奇异终端滑模控制方法并应用于Stewart平台的位置姿态控制中。通过分析Stewart平台的位置反解和速度反解,建立运动学方程,利用牛顿-欧...针对Stewart平台的六自由度(six degrees of freedom,6-DOF)轨迹跟踪问题,提出一种基于神经网络的非奇异终端滑模控制方法并应用于Stewart平台的位置姿态控制中。通过分析Stewart平台的位置反解和速度反解,建立运动学方程,利用牛顿-欧拉方程建立动力学方程,并结合加速度反解得到了平台的状态空间表达式;基于非奇异滑模面函数,设计非奇异终端滑模控制律。考虑到径向基函数(radial Basis function,RBF)神经网络的逼近特性,采用RBF神经网络对模型未知部分进行自适应逼近,并利用Lyapunov第二法设计了自适应律;通过仿真证明控制器设计的有效性。仿真结果表明,相比于比例积分微分(proportional integral derivative,PID)控制器,提出的RBF神经网络非奇异终端滑模控制器具有更好的轨迹跟踪精度和动态特性。展开更多
为减小电动汽车的充电行为对区域配电网的影响,即减少配电网负荷峰值的增加。本文综合考虑不同用户类型的电动汽车在居民小区、政府部门和商业区的行驶规律、停车规律、充电需求,以实现整个区域配电网削峰填谷为目标,提出了一种在V2G(ve...为减小电动汽车的充电行为对区域配电网的影响,即减少配电网负荷峰值的增加。本文综合考虑不同用户类型的电动汽车在居民小区、政府部门和商业区的行驶规律、停车规律、充电需求,以实现整个区域配电网削峰填谷为目标,提出了一种在V2G(vehicle-to-grid)模式下,通过分时电价引导的不同负荷类型电动汽车从时间和空间上双重互补进行有序充电的方法。以IEEE RBTS-5系统的第1,2条10 k V线路负荷需求为例,用蒙特卡洛方法模拟了本文所提的方法,验证了时空互补有序充电的方法对区域配电网总负荷削峰填谷的有效性。展开更多
文摘针对Stewart平台的六自由度(six degrees of freedom,6-DOF)轨迹跟踪问题,提出一种基于神经网络的非奇异终端滑模控制方法并应用于Stewart平台的位置姿态控制中。通过分析Stewart平台的位置反解和速度反解,建立运动学方程,利用牛顿-欧拉方程建立动力学方程,并结合加速度反解得到了平台的状态空间表达式;基于非奇异滑模面函数,设计非奇异终端滑模控制律。考虑到径向基函数(radial Basis function,RBF)神经网络的逼近特性,采用RBF神经网络对模型未知部分进行自适应逼近,并利用Lyapunov第二法设计了自适应律;通过仿真证明控制器设计的有效性。仿真结果表明,相比于比例积分微分(proportional integral derivative,PID)控制器,提出的RBF神经网络非奇异终端滑模控制器具有更好的轨迹跟踪精度和动态特性。
文摘为减小电动汽车的充电行为对区域配电网的影响,即减少配电网负荷峰值的增加。本文综合考虑不同用户类型的电动汽车在居民小区、政府部门和商业区的行驶规律、停车规律、充电需求,以实现整个区域配电网削峰填谷为目标,提出了一种在V2G(vehicle-to-grid)模式下,通过分时电价引导的不同负荷类型电动汽车从时间和空间上双重互补进行有序充电的方法。以IEEE RBTS-5系统的第1,2条10 k V线路负荷需求为例,用蒙特卡洛方法模拟了本文所提的方法,验证了时空互补有序充电的方法对区域配电网总负荷削峰填谷的有效性。