Construction 3D printing is changing construction industry, but for its immaturity, there are still many problems to be solved. One of the major problems is to study materials for construction 3D printing. Because pri...Construction 3D printing is changing construction industry, but for its immaturity, there are still many problems to be solved. One of the major problems is to study materials for construction 3D printing. Because printed buildings are very different from traditional buildings, there are special requirements for printing materials. Based on environmental and cost considerations, the recycled concrete as printing material is a perfect choice. In order to study and develop the construction 3D printing materials, it is necessary to predict the properties of them. As one of the most effective artificial intelligence algorithms, artificial neural network can deal with multi-parameter and nonlinear problems, and it can provide useful reference to predict the performance of recycled concrete for 3D printing. However, since there are many types and parameters for neural network, it is difficult to select the optimal neural network with excellent prediction performance. In this paper, by comparing different types of neural networks and statistically analyzing the distribution of the root-mean-square error (RMSE) and the coefficient of determination (R2) of these neural networks, we can determine the best performance among four neural networks and finally select the suitable one to predict the performance of 3D printing concrete.展开更多
Additive manufacturing(AM),also known as three-dimensional printing,is gaining increasing attention from academia and industry due to the unique advantages it has in comparison with traditional subtractive manufacturi...Additive manufacturing(AM),also known as three-dimensional printing,is gaining increasing attention from academia and industry due to the unique advantages it has in comparison with traditional subtractive manufacturing.However,AM processing parameters are difficult to tune,since they can exert a huge impact on the printed microstructure and on the performance of the subsequent products.It is a difficult task to build a process-structure-property-performance(PSPP)relationship for AM using traditional numerical and analytical models.Today,the machine learning(ML)method has been demonstrated to be a valid way to perform complex pattern recognition and regression analysis without an explicit need to construct and solve the underlying physical models.Among ML algorithms,the neural network(NN)is the most widely used model due to the large dataset that is currently available,strong computational power,and sophisticated algorithm architecture.This paper overviews the progress of applying the NN algorithm to several aspects of the AM whole chain,including model design,in situ monitoring,and quality evaluation.Current challenges in applying NNs to AM and potential solutions for these problems are then outlined.Finally,future trends are proposed in order to provide an overall discussion of this interdisciplinary area.展开更多
In Electronics Manufacturing Services (EMS) industry, Printed Circuit Board (PCB) inspection is tricky and hard, especially for soldering point inspection due to the extremely tiny size and inconsistent appearance for...In Electronics Manufacturing Services (EMS) industry, Printed Circuit Board (PCB) inspection is tricky and hard, especially for soldering point inspection due to the extremely tiny size and inconsistent appearance for uneven heating in reflow soldering process. Conventional computer vision technique based on OpenCV or Halcon usually cause false positive call for originally good soldering point on PCB because OpenCV or Halcon use the pre-defined threshold in color proportion for deciding whether the specific soldering point is OK or NG (not good). However, soldering point forms are various after heating in reflow soldering process. This paper puts forward a VGG structure deep convolutional neural network, which is named SolderNet for processing soldering point after reflow heating process to effectively inspect soldering point status, reduce omission rate and error rate, and increase first pass rate. SolderNet consists of 11 hidden convolution layers and 3 densely connected layers. Accuracy reports are divided into OK point recognition and NG point recognition. For OK soldering point recognition, 92% is achieved. For NG soldering point recognition, 99% is achieved. The dataset is collected from KAGA Co. Ltd Plant in Suzhou. First pass rate at KAGA plant is increased from 25% to 80% in general.展开更多
This paper presents the design of a small printed ultra wideband antenna with Band Notched characteristics. Both the free space and on-body performances of this antenna were investigated through simulation. The newly ...This paper presents the design of a small printed ultra wideband antenna with Band Notched characteristics. Both the free space and on-body performances of this antenna were investigated through simulation. The newly designed UWB antenna is more revised small form factor sized, with the ability to avoid interference caused by WLAN (5.15 - 5.825 GHz) and WiMAX (5.25 - 5.85 GHz) systems with a band notch. The return loss response, gain, radiation pattern on free space of the antenna were investigated. After that, the on-body performances were tested on 3-layer human body model with radiation pattern, gain, return loss, and efficiency at 3.5, 5.7, 8, 10 GHz and all the results were compared with free space results. As the on-body performance was very good, the proposed antenna will be suitable to be used for multi-purpose medical applications and sports performance monitoring.展开更多
The era of Industry 4.0 is around the corner.In this era that is full of keywords such as automation,intelligence,networking,informatizatio the problem of how printing com panies can betterintegrate in this era,and se...The era of Industry 4.0 is around the corner.In this era that is full of keywords such as automation,intelligence,networking,informatizatio the problem of how printing com panies can betterintegrate in this era,and seize the opportunities to devel op is very real.Since the processing information of printing industry has a展开更多
Drop-on-demand (DOD) bioprinting has been widely used in tissue engineering due to its highthroughput efficiency and cost effectiveness. However, this type of bioprinting involves challenges such as satellite generati...Drop-on-demand (DOD) bioprinting has been widely used in tissue engineering due to its highthroughput efficiency and cost effectiveness. However, this type of bioprinting involves challenges such as satellite generation, too-large droplet generation, and too-low droplet speed. These challenges reduce the stability and precision of DOD printing, disorder cell arrays, and hence generate further structural errors. In this paper, a multi-objective optimization (MOO) design method for DOD printing parameters through fully connected neural networks (FCNNs) is proposed in order to solve these challenges. The MOO problem comprises two objective functions: to develop the satellite formation model with FCNNs;and to decrease droplet diameter and increase droplet speed. A hybrid multi-subgradient descent bundle method with an adaptive learning rate algorithm (HMSGDBA), which combines the multisubgradient descent bundle (MSGDB) method with Adam algorithm, is introduced in order to search for the Pareto-optimal set for the MOO problem. The superiority of HMSGDBA is demonstrated through comparative studies with the MSGDB method. The experimental results show that a single droplet can be printed stably and the droplet speed can be increased from 0.88 to 2.08 m·s^-1 after optimization with the proposed method. The proposed method can improve both printing precision and stability, and is useful in realizing precise cell arrays and complex biological functions. Furthermore, it can be used to obtain guidelines for the setup of cell-printing experimental platforms.展开更多
The mass production of primed electronics can be achieved by roll-to-roll(R2R) printing system, so highly accurate web tension is required that can minimize the register error and keep the thickness and roughness of...The mass production of primed electronics can be achieved by roll-to-roll(R2R) printing system, so highly accurate web tension is required that can minimize the register error and keep the thickness and roughness of printed devices in limits. The web tension of a R2R system is regulated by the use of integrated load cells and active dancer system for printed electronics applications using decentralized multi-input-single-output(MISO) regularized variable learning rate backpropagation artificial neural networks. The active dancer system is used before printing system to reduce disturbances in the web tension of process span. The classical PID control result in tension spikes with the change in roll diameter of winder and unwinder rolls. The presence of dancer in R2R system shows that improved web tension control in printing span and the web tension can be enhanced from 3.75 N to 4.75 N. The overshoot of system is less than ±2.5 N and steady state error is within ± 1 N where load cells have a signal noise of ±0.7 N. The integration of load cells and active dancer with self-adapting neural network control provide a solution to the web tension control of multispan roll-to-roll system.展开更多
文摘Construction 3D printing is changing construction industry, but for its immaturity, there are still many problems to be solved. One of the major problems is to study materials for construction 3D printing. Because printed buildings are very different from traditional buildings, there are special requirements for printing materials. Based on environmental and cost considerations, the recycled concrete as printing material is a perfect choice. In order to study and develop the construction 3D printing materials, it is necessary to predict the properties of them. As one of the most effective artificial intelligence algorithms, artificial neural network can deal with multi-parameter and nonlinear problems, and it can provide useful reference to predict the performance of recycled concrete for 3D printing. However, since there are many types and parameters for neural network, it is difficult to select the optimal neural network with excellent prediction performance. In this paper, by comparing different types of neural networks and statistically analyzing the distribution of the root-mean-square error (RMSE) and the coefficient of determination (R2) of these neural networks, we can determine the best performance among four neural networks and finally select the suitable one to predict the performance of 3D printing concrete.
文摘Additive manufacturing(AM),also known as three-dimensional printing,is gaining increasing attention from academia and industry due to the unique advantages it has in comparison with traditional subtractive manufacturing.However,AM processing parameters are difficult to tune,since they can exert a huge impact on the printed microstructure and on the performance of the subsequent products.It is a difficult task to build a process-structure-property-performance(PSPP)relationship for AM using traditional numerical and analytical models.Today,the machine learning(ML)method has been demonstrated to be a valid way to perform complex pattern recognition and regression analysis without an explicit need to construct and solve the underlying physical models.Among ML algorithms,the neural network(NN)is the most widely used model due to the large dataset that is currently available,strong computational power,and sophisticated algorithm architecture.This paper overviews the progress of applying the NN algorithm to several aspects of the AM whole chain,including model design,in situ monitoring,and quality evaluation.Current challenges in applying NNs to AM and potential solutions for these problems are then outlined.Finally,future trends are proposed in order to provide an overall discussion of this interdisciplinary area.
文摘In Electronics Manufacturing Services (EMS) industry, Printed Circuit Board (PCB) inspection is tricky and hard, especially for soldering point inspection due to the extremely tiny size and inconsistent appearance for uneven heating in reflow soldering process. Conventional computer vision technique based on OpenCV or Halcon usually cause false positive call for originally good soldering point on PCB because OpenCV or Halcon use the pre-defined threshold in color proportion for deciding whether the specific soldering point is OK or NG (not good). However, soldering point forms are various after heating in reflow soldering process. This paper puts forward a VGG structure deep convolutional neural network, which is named SolderNet for processing soldering point after reflow heating process to effectively inspect soldering point status, reduce omission rate and error rate, and increase first pass rate. SolderNet consists of 11 hidden convolution layers and 3 densely connected layers. Accuracy reports are divided into OK point recognition and NG point recognition. For OK soldering point recognition, 92% is achieved. For NG soldering point recognition, 99% is achieved. The dataset is collected from KAGA Co. Ltd Plant in Suzhou. First pass rate at KAGA plant is increased from 25% to 80% in general.
文摘This paper presents the design of a small printed ultra wideband antenna with Band Notched characteristics. Both the free space and on-body performances of this antenna were investigated through simulation. The newly designed UWB antenna is more revised small form factor sized, with the ability to avoid interference caused by WLAN (5.15 - 5.825 GHz) and WiMAX (5.25 - 5.85 GHz) systems with a band notch. The return loss response, gain, radiation pattern on free space of the antenna were investigated. After that, the on-body performances were tested on 3-layer human body model with radiation pattern, gain, return loss, and efficiency at 3.5, 5.7, 8, 10 GHz and all the results were compared with free space results. As the on-body performance was very good, the proposed antenna will be suitable to be used for multi-purpose medical applications and sports performance monitoring.
文摘The era of Industry 4.0 is around the corner.In this era that is full of keywords such as automation,intelligence,networking,informatizatio the problem of how printing com panies can betterintegrate in this era,and seize the opportunities to devel op is very real.Since the processing information of printing industry has a
文摘Drop-on-demand (DOD) bioprinting has been widely used in tissue engineering due to its highthroughput efficiency and cost effectiveness. However, this type of bioprinting involves challenges such as satellite generation, too-large droplet generation, and too-low droplet speed. These challenges reduce the stability and precision of DOD printing, disorder cell arrays, and hence generate further structural errors. In this paper, a multi-objective optimization (MOO) design method for DOD printing parameters through fully connected neural networks (FCNNs) is proposed in order to solve these challenges. The MOO problem comprises two objective functions: to develop the satellite formation model with FCNNs;and to decrease droplet diameter and increase droplet speed. A hybrid multi-subgradient descent bundle method with an adaptive learning rate algorithm (HMSGDBA), which combines the multisubgradient descent bundle (MSGDB) method with Adam algorithm, is introduced in order to search for the Pareto-optimal set for the MOO problem. The superiority of HMSGDBA is demonstrated through comparative studies with the MSGDB method. The experimental results show that a single droplet can be printed stably and the droplet speed can be increased from 0.88 to 2.08 m·s^-1 after optimization with the proposed method. The proposed method can improve both printing precision and stability, and is useful in realizing precise cell arrays and complex biological functions. Furthermore, it can be used to obtain guidelines for the setup of cell-printing experimental platforms.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF),Ministry of Education,Science and Technology,Korea(Grant No.2010-0026163)Strategy Technology Development Project,Ministry of Knowledge Economy,Korea(Grant No.10032149)
文摘The mass production of primed electronics can be achieved by roll-to-roll(R2R) printing system, so highly accurate web tension is required that can minimize the register error and keep the thickness and roughness of printed devices in limits. The web tension of a R2R system is regulated by the use of integrated load cells and active dancer system for printed electronics applications using decentralized multi-input-single-output(MISO) regularized variable learning rate backpropagation artificial neural networks. The active dancer system is used before printing system to reduce disturbances in the web tension of process span. The classical PID control result in tension spikes with the change in roll diameter of winder and unwinder rolls. The presence of dancer in R2R system shows that improved web tension control in printing span and the web tension can be enhanced from 3.75 N to 4.75 N. The overshoot of system is less than ±2.5 N and steady state error is within ± 1 N where load cells have a signal noise of ±0.7 N. The integration of load cells and active dancer with self-adapting neural network control provide a solution to the web tension control of multispan roll-to-roll system.