Social network contains the interaction between social members, which constitutes the structure and attribute of social network. The interactive relationship of social network contains a lot of personal privacy inform...Social network contains the interaction between social members, which constitutes the structure and attribute of social network. The interactive relationship of social network contains a lot of personal privacy information. The direct release of social network data will cause the disclosure of privacy information. Aiming at the dynamic characteristics of social network data release, a new dynamic social network data publishing method based on differential privacy was proposed. This method was consistent with differential privacy. It is named DDPA (Dynamic Differential Privacy Algorithm). DDPA algorithm is an improvement of privacy protection algorithm in static social network data publishing. DDPA adds noise which follows Laplace to network edge weights. DDPA identifies the edge weight information that changes as the number of iterations increases, adding the privacy protection budget. Through experiments on real data sets, the results show that the DDPA algorithm satisfies the user’s privacy requirement in social network. DDPA reduces the execution time brought by iterations and reduces the information loss rate of graph structure.展开更多
With the increasing prevalence of social networks, more and more social network data are published for many applications, such as social network analysis and data mining. However, this brings privacy problems. For exa...With the increasing prevalence of social networks, more and more social network data are published for many applications, such as social network analysis and data mining. However, this brings privacy problems. For example, adversaries can get sensitive information of some individuals easily with little background knowledge. How to publish social network data for analysis purpose while preserving the privacy of individuals has raised many concerns. Many algorithms have been proposed to address this issue. In this paper, we discuss this privacy problem from two aspects: attack models and countermeasures. We analyse privacy conceres, model the background knowledge that adversary may utilize and review the recently developed attack models. We then survey the state-of-the-art privacy preserving methods in two categories: anonymization methods and differential privacy methods. We also provide research directions in this area.展开更多
Publish/subscribe paradigm is often adopted to create the communication infrastructure of the Internet of Things(IoT)for many clients to access enormous real-time sensor data.However,most current publish/subscribe mid...Publish/subscribe paradigm is often adopted to create the communication infrastructure of the Internet of Things(IoT)for many clients to access enormous real-time sensor data.However,most current publish/subscribe middlewares are based on traditional ossified IP networks,which are difficult to enable Quality of Service(QoS).How to design the next generation publish/subscribe middleware has become an urgent problem.The emerging Software Defined Networking(SDN)provides new opportunities to improve the QoS of publish/subscribe facilities for delivering events in IoT owing to its customized programmability and centralized control.We can encode event topics,priorities and security policies into flow entries of SDN-enabled switches to satisfy personalized QoS needs.In this paper,we propose a cross-layer QoS enabled SDN-like publish/subscribe communication infrastructure,aiming at building an IoT platform to seamlessly connect IoT services with SDN networks and improving the QoS of delivering events.We first present an SDN-like topic-oriented publish/subscribe middleware architecture with a cross-layer QoS control framework.Then we discuss prototype implementation,including topic management,topology maintenance,event routing and policy management.In the end,we use differentiated services and cross-layer access control as cross-layer QoS scenarios to verify the prototype.Experimental results show that our middleware is effective.展开更多
Publish/subscribe paradigm paves a way to integrate and serve many scalable, inter-operable Internet of Things(IoT) applications. The increasing IoT applications require new properties of publish/subscribe communicati...Publish/subscribe paradigm paves a way to integrate and serve many scalable, inter-operable Internet of Things(IoT) applications. The increasing IoT applications require new properties of publish/subscribe communication model, for example, strict quality of service(Qo S) guarantees, supporting a large number of widely distributed devices, etc. Software Defined Networking(SDN) enables personalized programming and individualized QoS supports for different applications. The combination of the two will have a good prospect. In this paper, we present an IoT-oriented communication platform which combines the publish/subscribe paradigm with SDN, aiming at establishing an IoT ecosystem to facilitate IoT services/applications accessing internet. We design the interaction logic of topic-based publish/subscribe middleware, and describe the setup and maintenance of topology information as well as event routing in detail, considering the characteristics of SDN. Finally, we exemplify its practicability with a deployed District Heating Control and Information Service System(DHCISS) and validity the effectiveness with some experiments.展开更多
Providing end-to-end delay guarantees in traditional Internet is a complex task due to the distributed nature of TCP/IP protocols. Software Defined Networking(SDN) gives a new dimension to improve QoS(Quality of Servi...Providing end-to-end delay guarantees in traditional Internet is a complex task due to the distributed nature of TCP/IP protocols. Software Defined Networking(SDN) gives a new dimension to improve QoS(Quality of Service) as it can benefit from its flexibility, programmability and centralized view. In this paper, we provide delay-guaranteed data transmission service instead of "best efforts" service for a topic-based publish/subscribe system by means of exploring these specific features of SDN. We attribute this routing problem in such conditions to Delay-Constraint Lowest Cost Steiner Tree(DCLCST) problem. To solve it, we compute the shortest delay paths from source node to every subscribe node and the shortest cost paths from every subscribe node to any other node using dijkstra algorithm. Then we construct a delay-constraint least cost steiner tree for per-topic based on these paths as multicast tree. We also present experimental results to demonstrate the effectiveness of the algorithms and methods we proposed.展开更多
Wireless sensor network nodes have only limited resources concerning memory and battery life-time. Mem- ory can be efficiently used by sharing data, and the life-time of a battery can be extended, when the node has lo...Wireless sensor network nodes have only limited resources concerning memory and battery life-time. Mem- ory can be efficiently used by sharing data, and the life-time of a battery can be extended, when the node has long power saving sleep-phases. We propose a publish/subscribe architecture that achieves these two aims. The results of our work are of great interest for sensor application developers, giving them now the opportu- nity to use our architecture for sharing data among different applications on the node as well as the different layers of the operating system. We introduce a blackboard which is used for centrally storing published val- ues, like measured data from a monitored sensor. This makes it possible to share stored data without monitoring the sensors once again, which is advantageously concerning power consumption, memory space, and reaction time. Beside the proposed publish/subscribe method for sensor nodes with its notification possibili- ties, our architecture fulfills also real-time requirements. We show how the well-known sensor operating system MANTIS OS can be extended by a real-time enabled, blackboard-based publish/subscribe architect- ture. This architecture and first of all its implementation is of special interest for cross layer optimization of sensor applications. Cross-layer approaches benefit from our architecture because the available implementa- tion can be used as an efficient framework for central storing and managing of shared values.展开更多
文摘Social network contains the interaction between social members, which constitutes the structure and attribute of social network. The interactive relationship of social network contains a lot of personal privacy information. The direct release of social network data will cause the disclosure of privacy information. Aiming at the dynamic characteristics of social network data release, a new dynamic social network data publishing method based on differential privacy was proposed. This method was consistent with differential privacy. It is named DDPA (Dynamic Differential Privacy Algorithm). DDPA algorithm is an improvement of privacy protection algorithm in static social network data publishing. DDPA adds noise which follows Laplace to network edge weights. DDPA identifies the edge weight information that changes as the number of iterations increases, adding the privacy protection budget. Through experiments on real data sets, the results show that the DDPA algorithm satisfies the user’s privacy requirement in social network. DDPA reduces the execution time brought by iterations and reduces the information loss rate of graph structure.
文摘With the increasing prevalence of social networks, more and more social network data are published for many applications, such as social network analysis and data mining. However, this brings privacy problems. For example, adversaries can get sensitive information of some individuals easily with little background knowledge. How to publish social network data for analysis purpose while preserving the privacy of individuals has raised many concerns. Many algorithms have been proposed to address this issue. In this paper, we discuss this privacy problem from two aspects: attack models and countermeasures. We analyse privacy conceres, model the background knowledge that adversary may utilize and review the recently developed attack models. We then survey the state-of-the-art privacy preserving methods in two categories: anonymization methods and differential privacy methods. We also provide research directions in this area.
基金the National Key Research and Development Program of China(No.2018YFB1003800).
文摘Publish/subscribe paradigm is often adopted to create the communication infrastructure of the Internet of Things(IoT)for many clients to access enormous real-time sensor data.However,most current publish/subscribe middlewares are based on traditional ossified IP networks,which are difficult to enable Quality of Service(QoS).How to design the next generation publish/subscribe middleware has become an urgent problem.The emerging Software Defined Networking(SDN)provides new opportunities to improve the QoS of publish/subscribe facilities for delivering events in IoT owing to its customized programmability and centralized control.We can encode event topics,priorities and security policies into flow entries of SDN-enabled switches to satisfy personalized QoS needs.In this paper,we propose a cross-layer QoS enabled SDN-like publish/subscribe communication infrastructure,aiming at building an IoT platform to seamlessly connect IoT services with SDN networks and improving the QoS of delivering events.We first present an SDN-like topic-oriented publish/subscribe middleware architecture with a cross-layer QoS control framework.Then we discuss prototype implementation,including topic management,topology maintenance,event routing and policy management.In the end,we use differentiated services and cross-layer access control as cross-layer QoS scenarios to verify the prototype.Experimental results show that our middleware is effective.
基金supported by National Hightech R&D Program of China (863 Program) under Grant (No. 2013AA102301)Natural Science Foundation of China under Grant (No. U1536112)
文摘Publish/subscribe paradigm paves a way to integrate and serve many scalable, inter-operable Internet of Things(IoT) applications. The increasing IoT applications require new properties of publish/subscribe communication model, for example, strict quality of service(Qo S) guarantees, supporting a large number of widely distributed devices, etc. Software Defined Networking(SDN) enables personalized programming and individualized QoS supports for different applications. The combination of the two will have a good prospect. In this paper, we present an IoT-oriented communication platform which combines the publish/subscribe paradigm with SDN, aiming at establishing an IoT ecosystem to facilitate IoT services/applications accessing internet. We design the interaction logic of topic-based publish/subscribe middleware, and describe the setup and maintenance of topology information as well as event routing in detail, considering the characteristics of SDN. Finally, we exemplify its practicability with a deployed District Heating Control and Information Service System(DHCISS) and validity the effectiveness with some experiments.
基金supported in part by the National Natural Science Foundation of China under Grants U1804164, 61902112 and U1404602in part by the Science and Technology Foundation of Henan Educational Committee under Grants 19A510015, 20A520019 and 20A520020the Doctoral Research Project of Henan Normal University under Grant 5101119170149
文摘Providing end-to-end delay guarantees in traditional Internet is a complex task due to the distributed nature of TCP/IP protocols. Software Defined Networking(SDN) gives a new dimension to improve QoS(Quality of Service) as it can benefit from its flexibility, programmability and centralized view. In this paper, we provide delay-guaranteed data transmission service instead of "best efforts" service for a topic-based publish/subscribe system by means of exploring these specific features of SDN. We attribute this routing problem in such conditions to Delay-Constraint Lowest Cost Steiner Tree(DCLCST) problem. To solve it, we compute the shortest delay paths from source node to every subscribe node and the shortest cost paths from every subscribe node to any other node using dijkstra algorithm. Then we construct a delay-constraint least cost steiner tree for per-topic based on these paths as multicast tree. We also present experimental results to demonstrate the effectiveness of the algorithms and methods we proposed.
文摘Wireless sensor network nodes have only limited resources concerning memory and battery life-time. Mem- ory can be efficiently used by sharing data, and the life-time of a battery can be extended, when the node has long power saving sleep-phases. We propose a publish/subscribe architecture that achieves these two aims. The results of our work are of great interest for sensor application developers, giving them now the opportu- nity to use our architecture for sharing data among different applications on the node as well as the different layers of the operating system. We introduce a blackboard which is used for centrally storing published val- ues, like measured data from a monitored sensor. This makes it possible to share stored data without monitoring the sensors once again, which is advantageously concerning power consumption, memory space, and reaction time. Beside the proposed publish/subscribe method for sensor nodes with its notification possibili- ties, our architecture fulfills also real-time requirements. We show how the well-known sensor operating system MANTIS OS can be extended by a real-time enabled, blackboard-based publish/subscribe architect- ture. This architecture and first of all its implementation is of special interest for cross layer optimization of sensor applications. Cross-layer approaches benefit from our architecture because the available implementa- tion can be used as an efficient framework for central storing and managing of shared values.