期刊文献+
共找到1,982篇文章
< 1 2 100 >
每页显示 20 50 100
Three-dimensional Fusion of Spaceborne and Ground Radar Reflectivity Data Using a Neural Network–Based Approach 被引量:5
1
作者 Leilei KOU Zhuihui WANG Fen XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第3期346-359,共14页
The spaceborne precipitation radar onboard the Tropical Rainfall Measuring Mission satellite (TRMM PR) can provide good measurement of the vertical structure of reflectivity, while ground radar (GR) has a relative... The spaceborne precipitation radar onboard the Tropical Rainfall Measuring Mission satellite (TRMM PR) can provide good measurement of the vertical structure of reflectivity, while ground radar (GR) has a relatively high horizontal resolution and greater sensitivity. Fusion of TRMM PR and GR reflectivity data may maximize the advantages from both instruments. In this paper, TRMM PR and GR reflectivity data are fused using a neural network (NN)-based approach. The main steps included are: quality control of TRMM PR and GR reflectivity data; spatiotemporal matchup; GR calibration bias correction; conversion of TRMM PR data from Ku to S band; fusion of TRMM PR and GR reflectivity data with an NN method: interpolation of reflectivity data that are below PR's sensitivity; blind areas compensation with a distance weighting-based merging approach; combination of three types of data: data with the NN method, data below PR's sensitivity and data within compensated blind areas. During the NN fusion step, the TRMM PR data are taken as targets of the training NNs, and gridded GR data after horizontal downsampling at different heights are used as the input. The trained NNs are then used to obtain 3D high-resolution reflectivity from the original GR gridded data. After 3D fusion of the TRMM PR and GR reflectivity data, a more complete and finer-scale 3D radar reflectivity dataset incorporating characteristics from both the TRMM PR and GR observations can be obtained. The fused reflectivity data are evaluated based on a convective precipitation event through comparison with the high resolution TRMM PR and GR data with an interpolation algorithm. 展开更多
关键词 TRMM PR ground radar 3D fusion neural network
下载PDF
Radar emitter multi-label recognition based on residual network 被引量:9
2
作者 Yu Hong-hai Yan Xiao-peng +2 位作者 Liu Shao-kun Li Ping Hao Xin-hong 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第3期410-417,共8页
In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and... In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and recognition method for multiple radar-emitter modulation types based on a residual network.This method can quickly perform parallel classification and recognition of multi-modulation radar time-domain aliasing signals under low SNRs.First,we perform time-frequency analysis on the received signal to extract the normalized time-frequency image through the short-time Fourier transform(STFT).The time-frequency distribution image is then denoised using a deep normalized convolutional neural network(DNCNN).Secondly,the multi-label classification and recognition model for multi-modulation radar emitter time-domain aliasing signals is established,and learning the characteristics of radar signal time-frequency distribution image dataset to achieve the purpose of training model.Finally,time-frequency image is recognized and classified through the model,thus completing the automatic classification and recognition of the time-domain aliasing signal.Simulation results show that the proposed method can classify and recognize radar emitter signals of different modulation types in parallel under low SNRs. 展开更多
关键词 radar emitter recognition Image processing PARALLEL Residual network MULTI-LABEL
下载PDF
New structure of Kalman filter for radar networking 被引量:1
3
作者 HeYou DongYunlong WangGuohong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期241-244,共4页
Due to the different data rates of the sensors and communication delays in the radar netting, the research of the asynchronous multisensor data fusion problem is more practical than that of the synchronous one. Throug... Due to the different data rates of the sensors and communication delays in the radar netting, the research of the asynchronous multisensor data fusion problem is more practical than that of the synchronous one. Through discussing the sequential approach, which is the classical asynchronous multisensor data fusion algorithm, a new algorithm based on distributed computation structure is proposed. The new algorithm can meet the requirement of real-time computation of netting fusion system, and is more practical for engineering compared with the classical sequential approach. Simulation results show the validity of the presented algorithm. 展开更多
关键词 MULTI-SENSOR radar networking ASYNCHRONOUS FUSION SEQUENTIAL
下载PDF
Deep convolutional neural network for meteorology target detection in airborne weather radar images 被引量:2
4
作者 YU Chaopeng XIONG Wei +1 位作者 LI Xiaoqing DONG Lei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1147-1157,共11页
Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a de... Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes. 展开更多
关键词 meteorology target detection ground clutter sup-pression weather radar images convolutional neural network(CNN)
下载PDF
An Approach for Radar Quantitative Precipitation Estimation Based on Spatiotemporal Network 被引量:1
5
作者 Shengchun Wang Xiaozhong Yu +3 位作者 Lianye Liu Jingui Huang Tsz Ho Wong Chengcheng Jiang 《Computers, Materials & Continua》 SCIE EI 2020年第10期459-479,共21页
Radar quantitative precipitation estimation(QPE)is a key and challenging task for many designs and applications with meteorological purposes.Since the Z-R relation between radar and rain has a number of parameters on ... Radar quantitative precipitation estimation(QPE)is a key and challenging task for many designs and applications with meteorological purposes.Since the Z-R relation between radar and rain has a number of parameters on different areas,and the rainfall varies with seasons,the traditional methods are incapable of achieving high spatial and temporal resolution and thus difficult to obtain a refined rainfall estimation.This paper proposes a radar quantitative precipitation estimation algorithm based on the spatiotemporal network model(ST-QPE),which designs a convolutional time-series network QPE-Net8 and a multi-scale feature fusion time-series network QPE-Net22 to address these limitations.We report on our investigation into contrast reversal experiments with radar echo and rainfall data collected by the Hunan Meteorological Observatory.Experimental results are verified and analyzed by using statistical and meteorological methods,and show that the ST-QPE model can inverse the rainfall information corresponding to the radar echo at a given moment,which provides practical guidance for accurate short-range precipitation nowcasting to prevent and mitigate disasters efficiently. 展开更多
关键词 QPE Z-R relationship spatiotemporal network algorithm radar echo
下载PDF
APPLICATION OF NOISE REDUCTION METHOD BASED ON CURVELET THRESHOLDING NEURAL NETWORK FOR POLAR ICE RADAR DATA PROCESSING 被引量:1
6
作者 Wang Wenpeng Zhao Bo Liu Xiaojun 《Journal of Electronics(China)》 2013年第4期377-383,共7页
Due to the demand of data processing for polar ice radar in our laboratory, a Curvelet Thresholding Neural Network (TNN) noise reduction method is proposed, and a new threshold function with infinite-order continuous ... Due to the demand of data processing for polar ice radar in our laboratory, a Curvelet Thresholding Neural Network (TNN) noise reduction method is proposed, and a new threshold function with infinite-order continuous derivative is constructed. The method is based on TNN model. In the learning process of TNN, the gradient descent method is adopted to solve the adaptive optimal thresholds of different scales and directions in Curvelet domain, and to achieve an optimal mean square error performance. In this paper, the specific implementation steps are presented, and the superiority of this method is verified by simulation. Finally, the proposed method is used to process the ice radar data obtained during the 28th Chinese National Antarctic Research Expedition in the region of Zhongshan Station, Antarctica. Experimental results show that the proposed method can reduce the noise effectively, while preserving the edge of the ice layers. 展开更多
关键词 radar data processing Thresholding Neural network (TNN) CURVELET Ice radar
下载PDF
Track-to-Track Association Technique in Radar Network in the Presence of Systematic Errors 被引量:1
7
作者 Jian Yang Qiang Song +1 位作者 Changwen Qu You He 《Journal of Signal and Information Processing》 2013年第3期288-298,共11页
The presence of systematic measuring errors complicates track-to-track association, spatially separates the tracks that correspond to the same true target, and seriously decline the performances of traditional track-t... The presence of systematic measuring errors complicates track-to-track association, spatially separates the tracks that correspond to the same true target, and seriously decline the performances of traditional track-to-track association algorithms. Consequently, the influence of radar systematic errors on tracks from different radars, which is described as some rotation and translation, has been analyzed theoretically in this paper. In addition, a novel approach named alignment-correlation method is developed to estimate and reduce this effect, align and correlate tracks accurately without prior registration using phase correlation technique and statistic binary track correlation algorithm. Monte-Carlo simulation results illustrate that the proposed algorithm has good performance in solving the track-to-track association problem with systematic errors in radar network and could provide effective and reliable associated tracks for the next step of registration. 展开更多
关键词 Systematic ERRORS Phase CORRELATION Track-to-Track ASSOCIATION Sensor REGISTRATION radar network
下载PDF
IMMUNE RBF NETWORK AND ITS APPLICATION IN THE MODULATION-STYLE RECOGNITION OF RADAR SIGNALS 被引量:1
8
作者 Gong Xinbao Zang Xiaogang Zhou Xilang Hu Guangrui (Dept. of Electronic Eng., Shanghai Jiaotong Univ., Shanghai 200030) 《Journal of Electronics(China)》 2003年第5期378-382,共5页
Based on Immune Programming(IP), a novel Radial Basis Function (RBF) networkdesigning method is proposed. Through extracting the preliminary knowledge about the widthof the basis function as the vaccine to form the im... Based on Immune Programming(IP), a novel Radial Basis Function (RBF) networkdesigning method is proposed. Through extracting the preliminary knowledge about the widthof the basis function as the vaccine to form the immune operator, the algorithm reduces thesearching space of canonical algorithm and improves the convergence speed. The application ofthe RBF network trained with the algorithm in the modulation-style recognition of radar signalsdemonstrates that the network has a fast convergence speed with good performances. 展开更多
关键词 Immune programming Immune operator Radial basis function network Analog modulated radar signals
下载PDF
Layer-Constrained Triangulated Irregular Network Algorithm Based on Ground Penetrating Radar Data and Its Application 被引量:1
9
作者 Zhenwu Wang Jianqiang Ma 《Journal of Beijing Institute of Technology》 EI CAS 2018年第1期146-154,共9页
In this paper,a layer-constrained triangulated irregular network( LC-TIN) algorithm is proposed for three-dimensional( 3 D) modelling,and applied to construct a 3 D model for geological disease information based o... In this paper,a layer-constrained triangulated irregular network( LC-TIN) algorithm is proposed for three-dimensional( 3 D) modelling,and applied to construct a 3 D model for geological disease information based on ground penetrating radar( GPR) data. Compared with the traditional TIN algorithm,the LCTIN algorithm introduced a layer constraint to the discrete data points during the 3 D modelling process,and it can dynamically construct networks from layer to layer and implement 3 D modelling for arbitrary shapes with high precision. The experimental results validated this method,the proposed algorithm not only can maintain the rationality of triangulation network,but also can obtain a good generation speed. In addition,the algorithm is also introduced to our self-developed 3 D visualization platform,which utilized GPR data to model geological diseases. Therefore the feasibility of the algorithm is verified in the practical application. 展开更多
关键词 layer-constrained triangulated irregular network geological diseases ground penetrating radar
下载PDF
Improved Weather Radar Echo Extrapolation Through Wind Speed Data Fusion Using a New Spatiotemporal Neural Network Model
10
作者 耿焕同 谢博洋 +2 位作者 葛晓燕 闵锦忠 庄潇然 《Journal of Tropical Meteorology》 SCIE 2023年第4期482-492,共11页
Weather radar echo extrapolation plays a crucial role in weather forecasting.However,traditional weather radar echo extrapolation methods are not very accurate and do not make full use of historical data.Deep learning... Weather radar echo extrapolation plays a crucial role in weather forecasting.However,traditional weather radar echo extrapolation methods are not very accurate and do not make full use of historical data.Deep learning algorithms based on Recurrent Neural Networks also have the problem of accumulating errors.Moreover,it is difficult to obtain higher accuracy by relying on a single historical radar echo observation.Therefore,in this study,we constructed the Fusion GRU module,which leverages a cascade structure to effectively combine radar echo data and mean wind data.We also designed the Top Connection so that the model can capture the global spatial relationship to construct constraints on the predictions.Based on the Jiangsu Province dataset,we compared some models.The results show that our proposed model,Cascade Fusion Spatiotemporal Network(CFSN),improved the critical success index(CSI)by 10.7%over the baseline at the threshold of 30 dBZ.Ablation experiments further validated the effectiveness of our model.Similarly,the CSI of the complete CFSN was 0.004 higher than the suboptimal solution without the cross-attention module at the threshold of 30 dBZ. 展开更多
关键词 deep learning spatiotemporal prediction radar echo extrapolation recurrent neural network multimodal fusion
下载PDF
基于CNN-Swin Transformer Network的LPI雷达信号识别
11
作者 苏琮智 杨承志 +2 位作者 邴雨晨 吴宏超 邓力洪 《现代雷达》 CSCD 北大核心 2024年第3期59-65,共7页
针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transforme... 针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transformer网络(CSTN),然后利用时频分析获取雷达信号的时频特征,对图像进行预处理后输入CSTN模型进行训练,由网络的底部到顶部不断提取图像更丰富的语义信息,最后通过Softmax分类器对六类不同调制方式信号进行分类识别。仿真实验表明:在SNR为-18 dB时,该方法对六类典型雷达信号的平均识别率达到了94.26%,证明了所提方法的可行性。 展开更多
关键词 低截获概率雷达 信号调制方式识别 Swin Transformer网络 卷积神经网络 时频分析
下载PDF
Study on Quantitative Precipitation Estimation by Polarimetric Radar Using Deep Learning
12
作者 Jiang HUANGFU Zhiqun HU +2 位作者 Jiafeng ZHENG Lirong WANG Yongjie ZHU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1147-1160,共14页
Accurate radar quantitative precipitation estimation(QPE)plays an essential role in disaster prevention and mitigation.In this paper,two deep learning-based QPE networks including a single-parameter network and a mult... Accurate radar quantitative precipitation estimation(QPE)plays an essential role in disaster prevention and mitigation.In this paper,two deep learning-based QPE networks including a single-parameter network and a multi-parameter network are designed.Meanwhile,a self-defined loss function(SLF)is proposed during modeling.The dataset includes Shijiazhuang S-band dual polarimetric radar(CINRAD/SAD)data and rain gauge data within the radar’s 100-km detection range during the flood season of 2021 in North China.Considering that the specific propagation phase shift(KDP)has a roughly linear relationship with the precipitation intensity,KDP is set to 0.5°km^(-1 )as a threshold value to divide all the rain data(AR)into a heavy rain(HR)and light rain(LR)dataset.Subsequently,12 deep learning-based QPE models are trained according to the input radar parameters,the precipitation datasets,and whether an SLF was adopted,respectively.The results suggest that the effects of QPE after distinguishing rainfall intensity are better than those without distinguishing,and the effects of using SLF are better than those that used MSE as a loss function.A Z-R relationship and a ZH-KDP-R synthesis method are compared with deep learning-based QPE.The mean relative errors(MRE)of AR models using SLF are improved by 61.90%,51.21%,and 56.34%compared with the Z-R relational method,and by 38.63%,42.55%,and 47.49%compared with the synthesis method.Finally,the models are further evaluated in three precipitation processes,which manifest that the deep learning-based models have significant advantages over the traditional empirical formula methods. 展开更多
关键词 polarimetric radar quantitative precipitation estimation deep learning single-parameter network multi-parameter network
下载PDF
Anti-swarm UAV radar system based on detection data fusion
13
作者 WANG Pengfei HU Jinfeng +2 位作者 HU Wen WANG Weiguang DONG Hao 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1167-1176,共10页
There is a growing body of research on the swarm unmanned aerial vehicle(UAV)in recent years,which has the characteristics of small,low speed,and low height as radar target.To confront the swarm UAV,the design of anti... There is a growing body of research on the swarm unmanned aerial vehicle(UAV)in recent years,which has the characteristics of small,low speed,and low height as radar target.To confront the swarm UAV,the design of anti-UAV radar system based on multiple input multiple output(MIMO)is put forward,which can elevate the performance of resolution,angle accuracy,high data rate,and tracking flexibility for swarm UAV detection.Target resolution and detection are the core problem in detecting the swarm UAV.The distinct advantage of MIMO system in angular accuracy measurement is demonstrated by comparing MIMO radar with phased array radar.Since MIMO radar has better performance in resolution,swarm UAV detection still has difficulty in target detection.This paper proposes a multi-mode data fusion algorithm based on deep neural networks to improve the detection effect.Subsequently,signal processing and data processing based on the detection fusion algorithm above are designed,forming a high resolution detection loop.Several simulations are designed to illustrate the feasibility of the designed system and the proposed algorithm. 展开更多
关键词 SWARM radar high resolution deep neural network fusion algorithm
下载PDF
Generalization Capabilities of Feedforward Neural Networks for Pattern Recognition
14
作者 黄德双 《Journal of Beijing Institute of Technology》 EI CAS 1996年第2期192+184-192,共10页
This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that th... This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that the outputs of the output layer in the FNNs for classification correspond to the estimates of posteriori probability of the input pattern samples with desired outputs 1 or 0. The theorem for the generalized kernel function in the radial basis function networks (RBFN) is given. For an 2-layer perceptron network (2-LPN). an idea of using extended samples to improve generalization capability is proposed. Finally. the experimental results of radar target classification are given to verify the generaliztion capability of the RBFNs. 展开更多
关键词 feedforward neural networks radial basis function networks multilayer perceptronnetworks generalization capability radar target classification
下载PDF
A Short-Range Quantitative Precipitation Forecast Algorithm Using Back-Propagation Neural Network Approach 被引量:5
15
作者 冯业荣 David H.KITZMILLER 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第3期405-414,共10页
A back-propagation neural network (BPNN) was used to establish relationships between the shortrange (0-3-h) rainfall and the predictors ranging from extrapolative forecasts of radar reflectivity, satelliteestimate... A back-propagation neural network (BPNN) was used to establish relationships between the shortrange (0-3-h) rainfall and the predictors ranging from extrapolative forecasts of radar reflectivity, satelliteestimated cloud-top temperature, lightning strike rates, and Nested Grid Model (NGM) outputs. Quan- titative precipitation forecasts (QPF) and the probabilities of categorical precipitation were obtained. Results of the BPNN algorithm were compared to the results obtained from the multiple linear regression algorithm for an independent dataset from the 1999 warm season over the continental United States. A sample forecast was made over the southeastern United States. Results showed that the BPNN categorical rainfall forecasts agreed well with Stage Ⅲ observations in terms of the size and shape of the area of rainfall. The BPNN tended to over-forecast the spatial extent of heavier rainfall amounts, but the positioning of the areas with rainfall ≥25.4 mm was still generally accurate. It appeared that the BPNN and linear regression approaches produce forecasts of very similar quality, although in some respects BPNN slightly outperformed the regression. 展开更多
关键词 quantitative precipitation forecast BP neural network WSR-88D Doppler radar lightning strike rate infrared satellite data NGM model
下载PDF
Automatic Identification of Clear-Air Echoes Based on Millimeter-wave Cloud Radar Measurements 被引量:3
16
作者 Ling YANG Yun WANG +5 位作者 Zhongke WANG Qian YANG Xingang FAN Fa TAO Xiaoqiong ZHEN Zhipeng YANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第8期912-924,共13页
Millimeter-wave cloud radar(MMCR)provides the capability of detecting the features of micro particles inside clouds and describing the internal microphysical structure of the clouds.Therefore,MMCR has been widely appl... Millimeter-wave cloud radar(MMCR)provides the capability of detecting the features of micro particles inside clouds and describing the internal microphysical structure of the clouds.Therefore,MMCR has been widely applied in cloud observations.However,due to the influence of non-meteorological factors such as insects,the cloud observations are often contaminated by non-meteorological echoes in the clear air,known as clear-air echoes.It is of great significance to automatically identify the clear-air echoes in order to extract effective meteorological information from the complex weather background.The characteristics of clear-air echoes are studied here by combining data from four devices:an MMCR,a laser-ceilometer,an L-band radiosonde,and an all-sky camera.In addition,a new algorithm,which includes feature extraction,feature selection,and classification,is proposed to achieve the automatic identification of clear-air echoes.The results show that the recognition algorithm is fairly satisfied in both simple and complex weather conditions.The recognition accuracy can reach up to 95.86%for the simple cases when cloud echoes and clear-air echoes are separate,and 88.38%for the complicated cases when low cloud echoes and clear-air echoes are mixed. 展开更多
关键词 millimeter-wave cloud radar clear-air echoes neural network laser ceilometer all-sky camera feature extraction feature selection
下载PDF
Dataset of human motion status using IR-UWB through-wall radar 被引量:3
17
作者 ZHU Zhengliang YANG Degui +1 位作者 ZHANG Junchao TONG Feng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第5期1083-1096,共14页
Ultra-wideband(UWB)through-wall radar has a wide range of applications in non-contact human information detection and monitoring.With the integration of machine learning technology,its potential prospects include the ... Ultra-wideband(UWB)through-wall radar has a wide range of applications in non-contact human information detection and monitoring.With the integration of machine learning technology,its potential prospects include the physiological monitoring of patients in the hospital environment and the daily monitoring at home.Although many target detection methods of UWB through-wall radar based on machine learning have been proposed,there is a lack of an opensource dataset to evaluate the performance of the algorithm.This published dataset is measured by impulse radio UWB(IR-UWB)through-wall radar system.Three test subjects are measured in different environments and several defined motion status.Using the presented dataset,we propose a human-motion-status recognition method using a convolutional neural network(CNN),and the detailed dataset partition method and the recognition process flow are given.On the well-trained network,the recognition accuracy of testing data for three kinds of motion status is higher than 99.7%.The dataset presented in this paper considers a simple environment.Therefore,we call on all organizations in the UWB radar field to cooperate to build opensource datasets to further promote the development of UWB through-wall radar. 展开更多
关键词 impulse radio ultra-wideband(IR-UWB) through-wall radar human motion status DATASET convolutional neural network(CNN)
下载PDF
Optimization method of linear barrier coverage deployment for multistatic radar 被引量:2
18
作者 LI Haipeng FENG Dazheng WANG Xiaohui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期68-80,共13页
To address the problem of building linear barrier coverage with the location restriction, an optimization method for deploying multistatic radars is proposed, where the location restriction splits the deployment line ... To address the problem of building linear barrier coverage with the location restriction, an optimization method for deploying multistatic radars is proposed, where the location restriction splits the deployment line into two segments. By proving the characteristics of deployment patterns, an optimal deployment sequence consisting of multiple deployment patterns is proposed and exploited to cover each segment. The types and numbers of deployment patterns are determined by an algorithm that combines the integer linear programming(ILP)and exhaustive method(EM). In addition, to reduce the computation amount, a formula is introduced to calculate the upper threshold of receivers’ number in a deployment pattern. Furthermore, since the objective function is non-convex and non-analytic, the overall model is divided into two layers concerning two suboptimization problems. Subsequently, another algorithm that integrates the segments and layers is proposed to determine the deployment parameters, such as the minimum cost, parameters of the optimal deployment sequence, and the location of the split point. Simulation results demonstrate that the proposed method can effectively determine the optimal deployment parameters under the location restriction. 展开更多
关键词 multistatic radar linear barrier coverage minimum deployment cost deployment sequence wireless sensor networks(WSNs)
下载PDF
An interference suppression algorithm for cognitive bistatic airborne radars 被引量:1
19
作者 XIA Deping ZHANG Liang +1 位作者 WU Tao HU Wenjun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期585-593,共9页
Interference suppression is a challenge for radar researchers, especially when mainlobe and sidelobe interference coexist. We present a comprehensive anti-interference approach based on a cognitive bistatic airborne r... Interference suppression is a challenge for radar researchers, especially when mainlobe and sidelobe interference coexist. We present a comprehensive anti-interference approach based on a cognitive bistatic airborne radar. The risk of interception is reduced by lowering the launch energy of the radar transmitting terminal in the direction of interference;main lobe and sidelobe interferences are suppressed via cooperation between the two radars. The interference received by a single radar is extracted from the overall radar signal using multiple signal classification(MUSIC), and the interference is cross-located using two different azimuthal angles. Neural networks allowing good, non-linear nonparametric approximations are used to predict the location of interference, and this information is then used to preset the transmitting notch antenna to reduce the likelihood of interception. To simultaneously suppress mainlobe and sidelobe interferences, a blocking matrix is used to mask mainlobe interference based on azimuthal information, and an adaptive process is used to suppress sidelobe interference. Mainlobe interference is eliminated using the data received by the two radars. Simulation verifies the performance of the model. 展开更多
关键词 interference suppression cognitive bistatic airborne radar neural network blocking matrix
下载PDF
Underground Disease Detection Based on Cloud Computing and Attention Region Neural Network 被引量:1
20
作者 Pinjie Xu Ce Li +3 位作者 Liguo Zhang Feng Yang Jing Zheng Jingwu Feng 《Journal on Artificial Intelligence》 2019年第1期9-18,共10页
Detecting the underground disease is very crucial for the roadbed health monitoring and maintenance of transport facilities,since it is very closely related to the structural health and reliability with the rapid deve... Detecting the underground disease is very crucial for the roadbed health monitoring and maintenance of transport facilities,since it is very closely related to the structural health and reliability with the rapid development of road traffic.Ground penetrating radar(GPR)is widely used to detect road and underground diseases.However,it is still a challenging task due to data access anywhere,transmission security and data processing on cloud.Cloud computing can provide scalable and powerful technologies for large-scale storage,processing and dissemination of GPR data.Combined with cloud computing and radar detection technology,it is possible to locate the underground disease quickly and accurately.This paper deploys the framework of a ground disease detection system based on cloud computing and proposes an attention region convolution neural network for object detection in the GPR images.Experimental results of the precision and recall metrics show that the proposed approach is more efficient than traditional objection detection method in ground disease detection of cloud based system. 展开更多
关键词 Cloud computing ground PENETRATING radar CONVOLUTION NEURAL network
下载PDF
上一页 1 2 100 下一页 到第
使用帮助 返回顶部