期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Modulatory effects of acupuncture on brain networks in mild cognitive impairment patients 被引量:39
1
作者 Ting-ting Tan Dan Wang +10 位作者 Ju-ke Huang Xiao-mei Zhou Xu Yuan Jiu-ping Liang Liang Yin Hong-liang Xie Xin-yan Jia Jiao Shi Fang Wang Hao-bo Yang Shang-jie Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期250-258,共9页
Functional magnetic resonance imaging has been widely used to investigate the effects of acupuncture on neural activity. However, most functional magnetic resonance imaging studies have focused on acute changes in bra... Functional magnetic resonance imaging has been widely used to investigate the effects of acupuncture on neural activity. However, most functional magnetic resonance imaging studies have focused on acute changes in brain activation induced by acupuncture. Thus, the time course of the therapeutic effects of acupuncture remains unclear. In this study, 32 patients with amnestic mild cognitive impairment were randomly divided into two groups, where they received either Tiaoshen Yizhi acupuncture or sham acupoint acupuncture. The needles were either twirled at Tiaoshen Yizhi acupoints, including Sishencong(EX-HN1), Yintang(EX-HN3), Neiguan(PC6), Taixi(KI3), Fenglong(ST40), and Taichong(LR3), or at related sham acupoints at a depth of approximately 15 mm, an angle of ± 60°, and a rate of approximately 120 times per minute. Acupuncture was conducted for 4 consecutive weeks, five times per week, on weekdays. Resting-state functional magnetic resonance imaging indicated that connections between cognition-related regions such as the insula, dorsolateral prefrontal cortex, hippocampus, thalamus, inferior parietal lobule, and anterior cingulate cortex increased after acupuncture at Tiaoshen Yizhi acupoints. The insula, dorsolateral prefrontal cortex, and hippocampus acted as central brain hubs. Patients in the Tiaoshen Yizhi group exhibited improved cognitive performance after acupuncture. In the sham acupoint acupuncture group, connections between brain regions were dispersed, and we found no differences in cognitive function following the treatment. These results indicate that acupuncture at Tiaoshen Yizhi acupoints can regulate brain networks by increasing connectivity between cognition-related regions, thereby improving cognitive function in patients with mild cognitive impairment. 展开更多
关键词 nerve regeneration mild cognitive impairment Alzheimer's disease neuroimaging resting-state functional magnetic resonance imaging brain network acupuncture Tiaoshen Yizhi neural regeneration
下载PDF
Planning for selective amygdalohippocampectomy involving less neuronal fiber damage based on brain connectivity using tractography
2
作者 Seung-Hak Lee Mansu Kim Hyunjin Park 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第7期1107-1112,共6页
Temporal lobe resection is an important treatment option for epilepsy that involves removal of potentially essential brain regions. Selective amygdalohippocampectomy is a widely performed temporal lobe surgery. We sug... Temporal lobe resection is an important treatment option for epilepsy that involves removal of potentially essential brain regions. Selective amygdalohippocampectomy is a widely performed temporal lobe surgery. We suggest starting the incision for selective amygdalohippocampectomy at the inferior temporal gyrus based on diffusion magnetic resonance imaging(MRI) tractography. Diffusion MRI data from 20 normal participants were obtained from Parkinson's Progression Markers Initiative(PPMI) database(www.ppmi-info.org). A tractography algorithm was applied to extract neuronal fiber information for the temporal lobe, hippocampus, and amygdala. Fiber information was analyzed in terms of the number of fibers and betweenness centrality. Distances between starting incisions and surgical target regions were also considered to explore the length of the surgical path. Middle temporal and superior temporal gyrus regions have higher connectivity values than the inferior temporal gyrus and thus are not good candidates for starting the incision. The distances between inferior temporal gyrus and surgical target regions were shorter than those between middle temporal gyrus and target regions. Thus, the inferior temporal gyrus is a good candidate for starting the incision. Starting the incision from the inferior temporal gyrus would spare the important(in terms of betweenness centrality values) middle region and shorten the distance to the target regions of the hippocampus and amygdala. 展开更多
关键词 nerve regeneration epilepsy selective amygdalohippocampectomy diffusion tensor imaging tractography connectivity betweenness centrality magnetic resonance imaging network analysis temporal lobe surgery neuronal fibers neural regeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部