Two significant issues in Internet-based networked control systems ( INCSs), transport performance of different protocols and security breach from Internet side, are investigated. First, for improving the performanc...Two significant issues in Internet-based networked control systems ( INCSs), transport performance of different protocols and security breach from Internet side, are investigated. First, for improving the performance of data transmission, user datagram protocol (UDP) is adopted as the main stand for controllers and plants using INCSs. Second, a dual-channel secure transmission scheme (DCSTS)based on data transmission characteristics of INCSs is proposed, in which a raw UDP channel and a secure TCP (transmission control protocol) connection making use of SSL/TLS (secure sockets layer/transport layer security) are included. Further, a networked control protocol (NCP) at application layer for supporting DCSTS between the controllers and plants in INCSs is designed, and it also aims at providing a universal communication mechanism for interoperability of devices among the networked control laboratories in Beijing Institute of Technology of China, Central South University of China and Tokyo University of Technology of Japan. By means of a networked single-degree-of-free- dom robot arm, an INCS under the new protocol and security environment is created. Compared with systems such as IPSec or SSL/TLS, which may cause more than 91% network throughput deduction, the new DCSTS protocol may yield results ten times better, being just 5.67%.展开更多
Mobile Industrial Internet of Things(IIoT)applications have achieved the explosive growth in recent years.The mobile IIoT has flourished and become the backbone of the industry,laying a solid foundation for the interc...Mobile Industrial Internet of Things(IIoT)applications have achieved the explosive growth in recent years.The mobile IIoT has flourished and become the backbone of the industry,laying a solid foundation for the interconnection of all things.The variety of application scenarios has brought serious challenges to mobile IIoT networks,which face complex and changeable communication environments.Ensuring data secure transmission is critical for mobile IIoT networks.This paper investigates the data secure transmission performance prediction of mobile IIoT networks.To cut down computational complexity,we propose a data secure transmission scheme employing Transmit Antenna Selection(TAS).The novel secrecy performance expressions are first derived.Then,to realize real-time secrecy analysis,we design an improved Convolutional Neural Network(CNN)model,and propose an intelligent data secure transmission performance prediction algorithm.For mobile signals,the important features may be removed by the pooling layers.This will lead to negative effects on the secrecy performance prediction.A novel nine-layer improved CNN model is designed.Out of the input and output layers,it removes the pooling layer and contains six convolution layers.Elman,Back-Propagation(BP)and LeNet methods are employed to compare with the proposed algorithm.Through simulation analysis,good prediction accuracy is achieved by the CNN algorithm.The prediction accuracy obtains a 59%increase.展开更多
The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure ...The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure domains like oil and gas supply,intelligent transportation,power grids,and autonomous agriculture,it is essential to guarantee the confidentiality,integrity,and authenticity of data collected and exchanged.However,the limited resources coupled with the heterogeneity of IoT devices make it inefficient or sometimes infeasible to achieve secure data transmission using traditional cryptographic techniques.Consequently,designing a lightweight secure data transmission scheme is becoming essential.In this article,we propose lightweight secure data transmission(LSDT)scheme for IoT environments.LSDT consists of three phases and utilizes an effective combination of symmetric keys and the Elliptic Curve Menezes-Qu-Vanstone asymmetric key agreement protocol.We design the simulation environment and experiments to evaluate the performance of the LSDT scheme in terms of communication and computation costs.Security and performance analysis indicates that the LSDT scheme is secure,suitable for IoT applications,and performs better in comparison to other related security schemes.展开更多
Heterogeneous cellular networks(HCNs)are envisioned as a promising architecture to provide seamless wireless coverage and increase network capacity.However,the densified multi-tier network architecture introduces exce...Heterogeneous cellular networks(HCNs)are envisioned as a promising architecture to provide seamless wireless coverage and increase network capacity.However,the densified multi-tier network architecture introduces excessive intra-and cross-tier interference and makes HCNs vulnerable to eavesdropping attacks.In this article,a dynamic spectrum control(DSC)-assisted transmission scheme is proposed for HCNs to strengthen network security and increase the network capacity.Specifically,the proposed DSC-assisted transmission scheme leverages the idea of block cryptography to generate sequence families,which represent the transmission decisions,by performing iterative and orthogonal sequence transformations.Based on the sequence families,multiple users can dynamically occupy different frequency slots for data transmission simultaneously.In addition,the collision probability of the data transmission is analyzed,which results in closed-form expressions of the reliable transmission probability and the secrecy probability.Then,the upper and lower bounds of network capacity are further derived with given requirements on the reliable and secure transmission probabilities.Simulation results demonstrate that the proposed DSC-assisted scheme can outperform the benchmark scheme in terms of security performance.Finally,the impacts of key factors in the proposed DSC-assisted scheme on the network capacity and security are evaluated and discussed.展开更多
In this paper, we propose a dual-threshold based secure On-Off transmission scheme, where signals are transmitted only if the channel condition can guarantee secure and reliable communication. First, we present a dyna...In this paper, we propose a dual-threshold based secure On-Off transmission scheme, where signals are transmitted only if the channel condition can guarantee secure and reliable communication. First, we present a dynamic access strategy to increase access efficiency, which provides an access region for the intended user. Then, we propose an emission control policy to transmit signals according to the current channel condition, which declines the influence of channel estimation errors and guarantees qualities of communication links. Furthermore, we give a comprehensive performance analysis for the proposed scheme in terms of connection outage probability(COP) and secrecy outage probability(SOP), and present a dual-threshold optimization model to further support the performance. Numerical results verify that the secure On-Off transmission scheme can increase the system secure energy efficiency and guarantee reliable and secure communication.展开更多
Due to the vulnerability of fibers in optical networks, physical- layer attacks targeting photon splitting, such as eavesdrop- ping, can potentially lead to large information and revenue loss. To enhance the existing ...Due to the vulnerability of fibers in optical networks, physical- layer attacks targeting photon splitting, such as eavesdrop- ping, can potentially lead to large information and revenue loss. To enhance the existing security approaches of optical networks, a new promising technology, quantum key distribu- tion (QKD), can securely encrypt services in optical networks, which has been a hotspot of research in recent years for its characteristic that can let clients know whether infomlation transmission has been eavesdropped or not. In this paper, we apply QKD to provide secret keys for optical networks and then introduce the architecture of QKD based optical net- work. As for the secret keys generated by QKD in optical net- works, we propose a re-transmission mechanism by analyzing the security risks in QKD-based optical networks. Numerical results indicate that the proposed re-transmission mechanism can provide strong protection degree with enhanced attack protection. Finally, we illustrated some future challenges in QKD-based optical networks.展开更多
Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),a...Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),are essential due to the limitations of simpler security measures,such as cryptography and firewalls.Due to their compact nature and low energy reserves,wireless networks present a significant challenge for security procedures.The features of small cells can cause threats to the network.Network Coding(NC)enabled small cells are vulnerable to various types of attacks.Avoiding attacks and performing secure“peer”to“peer”data transmission is a challenging task in small cells.Due to the low power and memory requirements of the proposed model,it is well suited to use with constrained small cells.An attacker cannot change the contents of data and generate a new Hashed Homomorphic Message Authentication Code(HHMAC)hash between transmissions since the HMAC function is generated using the shared secret.In this research,a chaotic sequence mapping based low overhead 1D Improved Logistic Map is used to secure“peer”to“peer”data transmission model using lightweight H-MAC(1D-LM-P2P-LHHMAC)is proposed with accurate intrusion detection.The proposed model is evaluated with the traditional models by considering various evaluation metrics like Vector Set Generation Accuracy Levels,Key Pair Generation Time Levels,Chaotic Map Accuracy Levels,Intrusion Detection Accuracy Levels,and the results represent that the proposed model performance in chaotic map accuracy level is 98%and intrusion detection is 98.2%.The proposed model is compared with the traditional models and the results represent that the proposed model secure data transmission levels are high.展开更多
As the Internet offers increased connectivity between human beings, it has fallen prey to malicious users who exploit its resources to gain illegal access to critical information. In an effort to protect computer netw...As the Internet offers increased connectivity between human beings, it has fallen prey to malicious users who exploit its resources to gain illegal access to critical information. In an effort to protect computer networks from external attacks, two common types of Intrusion Detection Systems (IDSs) are often deployed. The first type is signature-based IDSs which can detect intrusions efficiently by scanning network packets and comparing them with human-generated signatures describing previously-observed attacks. The second type is anomaly-based IDSs able to detect new attacks through modeling normal network traffic without the need for a human expert. Despite this advantage, anomaly-based IDSs are limited by a high false-alarm rate and difficulty detecting network attacks attempting to blend in with normal traffic. In this study, we propose a StreamPreDeCon anomaly-based IDS. StreamPreDeCon is an extension of the preference subspace clustering algorithm PreDeCon designed to resolve some of the challenges associated with anomalous packet detection. Using network packets extracted from the first week of the DARPA '99 intrusion detection evaluation dataset combined with Generic Http, Shellcode and CLET attacks, our IDS achieved 94.4% sensitivity and 0.726% false positives in a best case scenario. To measure the overall effectiveness of the IDS, the average sensitivity and false positive rates were calculated for both the maximum sensitivity and the minimum false positive rate. With the maximum sensitivity, the IDS had 80% sensitivity and 9% false positives on average. The IDS also averaged 63% sensitivity with a 0.4% false positive rate when the minimal number of false positives is needed. These rates are an improvement on results found in a previous study as the sensitivity rate in general increased while the false positive rate decreased.展开更多
The access of unified power flow controllers(UPFC)has changed the structure and operation mode of power grids all across the world,and it has brought severe challenges to the traditional real-time calculation of secur...The access of unified power flow controllers(UPFC)has changed the structure and operation mode of power grids all across the world,and it has brought severe challenges to the traditional real-time calculation of security correction based on traditionalmodels.Considering the limitation of computational efficiency regarding complex,physical models,a data-driven power system security correction method with UPFC is,in this paper,proposed.Based on the complex mapping relationship between the operation state data and the security correction strategy,a two-stage deep neural network(DNN)learning framework is proposed,which divides the offline training task of security correction into two stages:in the first stage,the stacked auto-encoder(SAE)classification model is established,and the node correction state(0/1)output based on the fault information;in the second stage,the DNN learningmodel is established,and the correction amount of each action node is obtained based on the action nodes output in the previous stage.In this paper,the UPFC demonstration project of NanjingWest Ring Network is taken as a case study to validate the proposed method.The results show that the proposed method can fully meet the real-time security correction time requirements of power grids,and avoid the inherent defects of the traditional model method without an iterative solution and can also provide reasonable security correction strategies for N-1 and N-2 faults.展开更多
Wireless Sensor Networks(WSN)interlink numerous Sensor Nodes(SN)to support Internet of Things(loT)services.But the data gathered from SNs can be divulged,tempered,and forged.Conventional WSN data processes manage the ...Wireless Sensor Networks(WSN)interlink numerous Sensor Nodes(SN)to support Internet of Things(loT)services.But the data gathered from SNs can be divulged,tempered,and forged.Conventional WSN data processes manage the data in a centralized format at terminal gadgets.These devices are prone to attacks and the security of systems can get compromised.Blockchain is a distributed and decentralized technique that has the ability to handle security issues in WSN.The security issues include transactions that may be copied and spread across numerous nodes in a peer-peer network system.This breaches the mutual trust and allows data immutability which in turn permits the network to go on.At some instances,few nodes die or get compromised due to heavy power utilization.The current article develops an Energy Aware Chaotic Pigeon Inspired Optimization based Clustering scheme for Blockchain assisted WSN technique abbreviated as EACPIO-CB technique.The primary objective of the proposed EACPIO-CB model is to proficiently group the sensor nodes into clusters and exploit Blockchain(BC)for inter-cluster communication in the network.To select ClusterHeads(CHs)and organize the clusters,the presented EACPIO-CB model designs a fitness function that involves distinct input parameters.Further,BC technology enables the communication between one CH and the other and with the Base Station(BS)in the network.The authors conducted comprehensive set of simulations and the outcomes were investigated under different aspects.The simulation results confirmed the better performance of EACPIO-CB method over recent methodologies.展开更多
A Virtual Private Network (VPN) allows the provisioning of private network services for an organization over a public network such as the Internet. In other words a VPN can transform the characteristics of a public wh...A Virtual Private Network (VPN) allows the provisioning of private network services for an organization over a public network such as the Internet. In other words a VPN can transform the characteristics of a public which may be non-secure network into those of a private secure network through using encrypted tunnels. This work customized a standard VPN to a newly one called EEVPN (Effective Extensive VPN). It transmits a small data size in through a web based system in a reasonable time without affecting the security level. The proposed EEVPN is more effective where it takes small data transmission time with achieving high level of security. Also, the proposed EEVPN is more extensive because it is not built for a specific environment.展开更多
文摘Two significant issues in Internet-based networked control systems ( INCSs), transport performance of different protocols and security breach from Internet side, are investigated. First, for improving the performance of data transmission, user datagram protocol (UDP) is adopted as the main stand for controllers and plants using INCSs. Second, a dual-channel secure transmission scheme (DCSTS)based on data transmission characteristics of INCSs is proposed, in which a raw UDP channel and a secure TCP (transmission control protocol) connection making use of SSL/TLS (secure sockets layer/transport layer security) are included. Further, a networked control protocol (NCP) at application layer for supporting DCSTS between the controllers and plants in INCSs is designed, and it also aims at providing a universal communication mechanism for interoperability of devices among the networked control laboratories in Beijing Institute of Technology of China, Central South University of China and Tokyo University of Technology of Japan. By means of a networked single-degree-of-free- dom robot arm, an INCS under the new protocol and security environment is created. Compared with systems such as IPSec or SSL/TLS, which may cause more than 91% network throughput deduction, the new DCSTS protocol may yield results ten times better, being just 5.67%.
基金supported by the National Natural Science Foundation of China(No.62201313)the Opening Foundation of Fujian Key Laboratory of Sensing and Computing for Smart Cities(Xiamen University)(No.SCSCKF202101)the Open Project of Fujian Provincial Key Laboratory of Information Processing and Intelligent Control(Minjiang University)(No.MJUKF-IPIC202206).
文摘Mobile Industrial Internet of Things(IIoT)applications have achieved the explosive growth in recent years.The mobile IIoT has flourished and become the backbone of the industry,laying a solid foundation for the interconnection of all things.The variety of application scenarios has brought serious challenges to mobile IIoT networks,which face complex and changeable communication environments.Ensuring data secure transmission is critical for mobile IIoT networks.This paper investigates the data secure transmission performance prediction of mobile IIoT networks.To cut down computational complexity,we propose a data secure transmission scheme employing Transmit Antenna Selection(TAS).The novel secrecy performance expressions are first derived.Then,to realize real-time secrecy analysis,we design an improved Convolutional Neural Network(CNN)model,and propose an intelligent data secure transmission performance prediction algorithm.For mobile signals,the important features may be removed by the pooling layers.This will lead to negative effects on the secrecy performance prediction.A novel nine-layer improved CNN model is designed.Out of the input and output layers,it removes the pooling layer and contains six convolution layers.Elman,Back-Propagation(BP)and LeNet methods are employed to compare with the proposed algorithm.Through simulation analysis,good prediction accuracy is achieved by the CNN algorithm.The prediction accuracy obtains a 59%increase.
基金support of the Interdisciplinary Research Center for Intelligent Secure Systems(IRC-ISS)Internal Fund Grant#INSS2202.
文摘The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure domains like oil and gas supply,intelligent transportation,power grids,and autonomous agriculture,it is essential to guarantee the confidentiality,integrity,and authenticity of data collected and exchanged.However,the limited resources coupled with the heterogeneity of IoT devices make it inefficient or sometimes infeasible to achieve secure data transmission using traditional cryptographic techniques.Consequently,designing a lightweight secure data transmission scheme is becoming essential.In this article,we propose lightweight secure data transmission(LSDT)scheme for IoT environments.LSDT consists of three phases and utilizes an effective combination of symmetric keys and the Elliptic Curve Menezes-Qu-Vanstone asymmetric key agreement protocol.We design the simulation environment and experiments to evaluate the performance of the LSDT scheme in terms of communication and computation costs.Security and performance analysis indicates that the LSDT scheme is secure,suitable for IoT applications,and performs better in comparison to other related security schemes.
基金supported by the National Natural Science Foundation of China(61825104 and 91638204)the China Scholarship Council(CSC)+1 种基金the Natural Sciences and Engineering Research Council(NSERC)of CanadaUniversity Innovation Platform Project(2019921815KYPT009JC011)。
文摘Heterogeneous cellular networks(HCNs)are envisioned as a promising architecture to provide seamless wireless coverage and increase network capacity.However,the densified multi-tier network architecture introduces excessive intra-and cross-tier interference and makes HCNs vulnerable to eavesdropping attacks.In this article,a dynamic spectrum control(DSC)-assisted transmission scheme is proposed for HCNs to strengthen network security and increase the network capacity.Specifically,the proposed DSC-assisted transmission scheme leverages the idea of block cryptography to generate sequence families,which represent the transmission decisions,by performing iterative and orthogonal sequence transformations.Based on the sequence families,multiple users can dynamically occupy different frequency slots for data transmission simultaneously.In addition,the collision probability of the data transmission is analyzed,which results in closed-form expressions of the reliable transmission probability and the secrecy probability.Then,the upper and lower bounds of network capacity are further derived with given requirements on the reliable and secure transmission probabilities.Simulation results demonstrate that the proposed DSC-assisted scheme can outperform the benchmark scheme in terms of security performance.Finally,the impacts of key factors in the proposed DSC-assisted scheme on the network capacity and security are evaluated and discussed.
基金supported in part by National Natural Science Foundation of China under Grants No. 61871404, 61401510, 61521003, 61501516
文摘In this paper, we propose a dual-threshold based secure On-Off transmission scheme, where signals are transmitted only if the channel condition can guarantee secure and reliable communication. First, we present a dynamic access strategy to increase access efficiency, which provides an access region for the intended user. Then, we propose an emission control policy to transmit signals according to the current channel condition, which declines the influence of channel estimation errors and guarantees qualities of communication links. Furthermore, we give a comprehensive performance analysis for the proposed scheme in terms of connection outage probability(COP) and secrecy outage probability(SOP), and present a dual-threshold optimization model to further support the performance. Numerical results verify that the secure On-Off transmission scheme can increase the system secure energy efficiency and guarantee reliable and secure communication.
基金supported in part by NSFC project(Grant No.61571058and 61601052)Science and Technology Project of State Grid Corporation of China:The Key Technology Research of Elastic Optical Network(Grant No.526800160006)+1 种基金China Postdoctoral Science Foundation Project(2016M600970)ZTE Industry-Academia-Research Cooperation Funds
文摘Due to the vulnerability of fibers in optical networks, physical- layer attacks targeting photon splitting, such as eavesdrop- ping, can potentially lead to large information and revenue loss. To enhance the existing security approaches of optical networks, a new promising technology, quantum key distribu- tion (QKD), can securely encrypt services in optical networks, which has been a hotspot of research in recent years for its characteristic that can let clients know whether infomlation transmission has been eavesdropped or not. In this paper, we apply QKD to provide secret keys for optical networks and then introduce the architecture of QKD based optical net- work. As for the secret keys generated by QKD in optical net- works, we propose a re-transmission mechanism by analyzing the security risks in QKD-based optical networks. Numerical results indicate that the proposed re-transmission mechanism can provide strong protection degree with enhanced attack protection. Finally, we illustrated some future challenges in QKD-based optical networks.
文摘Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),are essential due to the limitations of simpler security measures,such as cryptography and firewalls.Due to their compact nature and low energy reserves,wireless networks present a significant challenge for security procedures.The features of small cells can cause threats to the network.Network Coding(NC)enabled small cells are vulnerable to various types of attacks.Avoiding attacks and performing secure“peer”to“peer”data transmission is a challenging task in small cells.Due to the low power and memory requirements of the proposed model,it is well suited to use with constrained small cells.An attacker cannot change the contents of data and generate a new Hashed Homomorphic Message Authentication Code(HHMAC)hash between transmissions since the HMAC function is generated using the shared secret.In this research,a chaotic sequence mapping based low overhead 1D Improved Logistic Map is used to secure“peer”to“peer”data transmission model using lightweight H-MAC(1D-LM-P2P-LHHMAC)is proposed with accurate intrusion detection.The proposed model is evaluated with the traditional models by considering various evaluation metrics like Vector Set Generation Accuracy Levels,Key Pair Generation Time Levels,Chaotic Map Accuracy Levels,Intrusion Detection Accuracy Levels,and the results represent that the proposed model performance in chaotic map accuracy level is 98%and intrusion detection is 98.2%.The proposed model is compared with the traditional models and the results represent that the proposed model secure data transmission levels are high.
文摘As the Internet offers increased connectivity between human beings, it has fallen prey to malicious users who exploit its resources to gain illegal access to critical information. In an effort to protect computer networks from external attacks, two common types of Intrusion Detection Systems (IDSs) are often deployed. The first type is signature-based IDSs which can detect intrusions efficiently by scanning network packets and comparing them with human-generated signatures describing previously-observed attacks. The second type is anomaly-based IDSs able to detect new attacks through modeling normal network traffic without the need for a human expert. Despite this advantage, anomaly-based IDSs are limited by a high false-alarm rate and difficulty detecting network attacks attempting to blend in with normal traffic. In this study, we propose a StreamPreDeCon anomaly-based IDS. StreamPreDeCon is an extension of the preference subspace clustering algorithm PreDeCon designed to resolve some of the challenges associated with anomalous packet detection. Using network packets extracted from the first week of the DARPA '99 intrusion detection evaluation dataset combined with Generic Http, Shellcode and CLET attacks, our IDS achieved 94.4% sensitivity and 0.726% false positives in a best case scenario. To measure the overall effectiveness of the IDS, the average sensitivity and false positive rates were calculated for both the maximum sensitivity and the minimum false positive rate. With the maximum sensitivity, the IDS had 80% sensitivity and 9% false positives on average. The IDS also averaged 63% sensitivity with a 0.4% false positive rate when the minimal number of false positives is needed. These rates are an improvement on results found in a previous study as the sensitivity rate in general increased while the false positive rate decreased.
基金supported in part by Science and Technology Projects of Electric Power Research Institute of State Grid Jiangsu Electric Power Co.,Ltd.(J2021171).
文摘The access of unified power flow controllers(UPFC)has changed the structure and operation mode of power grids all across the world,and it has brought severe challenges to the traditional real-time calculation of security correction based on traditionalmodels.Considering the limitation of computational efficiency regarding complex,physical models,a data-driven power system security correction method with UPFC is,in this paper,proposed.Based on the complex mapping relationship between the operation state data and the security correction strategy,a two-stage deep neural network(DNN)learning framework is proposed,which divides the offline training task of security correction into two stages:in the first stage,the stacked auto-encoder(SAE)classification model is established,and the node correction state(0/1)output based on the fault information;in the second stage,the DNN learningmodel is established,and the correction amount of each action node is obtained based on the action nodes output in the previous stage.In this paper,the UPFC demonstration project of NanjingWest Ring Network is taken as a case study to validate the proposed method.The results show that the proposed method can fully meet the real-time security correction time requirements of power grids,and avoid the inherent defects of the traditional model method without an iterative solution and can also provide reasonable security correction strategies for N-1 and N-2 faults.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number(142/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R238)+1 种基金Princess Nourah bint Abdulrahman University,Riyadh,Saudi ArabiaThe authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4340237DSR24).
文摘Wireless Sensor Networks(WSN)interlink numerous Sensor Nodes(SN)to support Internet of Things(loT)services.But the data gathered from SNs can be divulged,tempered,and forged.Conventional WSN data processes manage the data in a centralized format at terminal gadgets.These devices are prone to attacks and the security of systems can get compromised.Blockchain is a distributed and decentralized technique that has the ability to handle security issues in WSN.The security issues include transactions that may be copied and spread across numerous nodes in a peer-peer network system.This breaches the mutual trust and allows data immutability which in turn permits the network to go on.At some instances,few nodes die or get compromised due to heavy power utilization.The current article develops an Energy Aware Chaotic Pigeon Inspired Optimization based Clustering scheme for Blockchain assisted WSN technique abbreviated as EACPIO-CB technique.The primary objective of the proposed EACPIO-CB model is to proficiently group the sensor nodes into clusters and exploit Blockchain(BC)for inter-cluster communication in the network.To select ClusterHeads(CHs)and organize the clusters,the presented EACPIO-CB model designs a fitness function that involves distinct input parameters.Further,BC technology enables the communication between one CH and the other and with the Base Station(BS)in the network.The authors conducted comprehensive set of simulations and the outcomes were investigated under different aspects.The simulation results confirmed the better performance of EACPIO-CB method over recent methodologies.
文摘A Virtual Private Network (VPN) allows the provisioning of private network services for an organization over a public network such as the Internet. In other words a VPN can transform the characteristics of a public which may be non-secure network into those of a private secure network through using encrypted tunnels. This work customized a standard VPN to a newly one called EEVPN (Effective Extensive VPN). It transmits a small data size in through a web based system in a reasonable time without affecting the security level. The proposed EEVPN is more effective where it takes small data transmission time with achieving high level of security. Also, the proposed EEVPN is more extensive because it is not built for a specific environment.