In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST...In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.展开更多
For the high altitude cruising flight phase of a hypersonic cruise missile (HCM), a relative motion mod- el between the missile and the target is established by defining virtual target and combining the theory of th...For the high altitude cruising flight phase of a hypersonic cruise missile (HCM), a relative motion mod- el between the missile and the target is established by defining virtual target and combining the theory of the dif- ferential geometry with missile motion equations. Based on the model, the motion between the missile and the tar- get is considered as a single target differential game problem, and a new open-loop differential game midcourse guidance law (DGMGL) is deduced by solving the corresponding Hamiltonian Function. Meanwhile, a new struc- ture of a closed-loop DGMGL is presented and the training data for back propagation neural network (BPNN) are designed. By combining the theory of BPNN with the open-loop DGMGL obtained above, the law intelligence is realized. Finally, simulation is carried out and the validity of the law is testified.展开更多
This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with u...This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with uncertainties and observation noise.The attack-defense engagement scenario is modeled as a partially observable Markov decision process(POMDP).Given the benefits of recurrent neural networks(RNNs)in processing sequence information,an RNN layer is incorporated into the agent’s policy network to alleviate the bottleneck of traditional deep reinforcement learning methods while dealing with POMDPs.The measurements from the interceptor’s seeker during each guidance cycle are combined into one sequence as the input to the policy network since the detection frequency of an interceptor is usually higher than its guidance frequency.During training,the hidden states of the RNN layer in the policy network are recorded to overcome the partially observable problem that this RNN layer causes inside the agent.The training curves show that the proposed RRTD3 successfully enhances data efficiency,training speed,and training stability.The test results confirm the advantages of the RRTD3-based guidance laws over some conventional guidance laws.展开更多
The models of noallnear systems are idendried by recmeive pedctive ermrs(RPE) methed based on thelayered neural networks. To improve the identification precision, gain callcient and arentUm factor are itheucedinto the...The models of noallnear systems are idendried by recmeive pedctive ermrs(RPE) methed based on thelayered neural networks. To improve the identification precision, gain callcient and arentUm factor are itheucedinto the algorithm for the data are dids by noses and vny suddnly. this lerthm is applied to the twcmedeiling of rolling and pitchng angles of ndssiles. Simulation results shoW tha the proposed algurithm is sultable forthe modelling of nodrinear systems.展开更多
In order to study intelligent fault diagnosis methods based on fuzzy neural network (NN) expert system and build up intelligent fault diagnosis for a type of missile weapon system, the concrete implementation of a fuz...In order to study intelligent fault diagnosis methods based on fuzzy neural network (NN) expert system and build up intelligent fault diagnosis for a type of missile weapon system, the concrete implementation of a fuzzy NN fault diagnosis expert system is given in this paper. Based on thorough research of knowledge presentation, the intelligent fault diagnosis system is implemented with artificial intelligence for a large-scale missile weapon equipment. The method is an effective way to perform fuzzy fault diagnosis. Moreover, it provides a new way of the fault diagnosis for large-scale missile weapon equipment.展开更多
Based on the analysis for the interception process of ship-to-air missile system to the anti-ship missile stream, the antagonism of ship-to-air missile and anti-ship missile stream was modeled by Monte Carlo method. T...Based on the analysis for the interception process of ship-to-air missile system to the anti-ship missile stream, the antagonism of ship-to-air missile and anti-ship missile stream was modeled by Monte Carlo method. This model containing the probability of acquiring anti-ship missile, threat estimation, firepower distribution, interception, effectiveness evaluation and firepower turning, can dynamically simulate the antagonism process of anti-ship missile attack stream and anti-air missile weapon system. The anti-ship missile's saturation attack stream for different ship-to-air missile systems can be calculated quantitatively. The simulated results reveal the relations among the anti-ship missile saturation attack and the attack intensity of anti-ship missile, interception mode and the main parameters of anti-air missile weapon system. It provides a theoretical basis for the effective operation of anti-ship missile.展开更多
A high-level technology is revealed that can effectively convert any distributed system into a globally programmable machine capable of operating without central resources and self-recovering from indiscriminate damag...A high-level technology is revealed that can effectively convert any distributed system into a globally programmable machine capable of operating without central resources and self-recovering from indiscriminate damages. Integral mission scenarios in Distributed Scenario Language (DSL) can be injected from any point, runtime covering & grasping the whole system or its parts, setting operational infrastructures, and orienting local and global behavior in the way needed. Many operational scenarios can be simultaneously injected into this spatial machine from different points, cooperating or competing over the shared distributed knowledge as overlapping fields of solutions. Distributed DSL interpreter organization and benefits of using this technology for integrated air and missile defense are discussed along with programming examples in this and other fields.展开更多
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
This paper relates to accepted presentation at international conference Air and Missile Defence Technology,November 16-17,2022,London UK(day two),reflecting contents of the presentation slides.It describes application...This paper relates to accepted presentation at international conference Air and Missile Defence Technology,November 16-17,2022,London UK(day two),reflecting contents of the presentation slides.It describes applications of the patented and internationally tested Spatial Grasp Technology(SGT)and its Spatial Grasp Language(SGL)for Integrated Air and Missile Defense(IAMD).Based on holistic space navigation and processing by recursive mobile code self-spreading in distributed words,SGT differs radically from traditional management of large systems as consisting of parts exchanging messages.The dynamic network of SGL interpreters can be arbitrarily large and cover terrestrial and celestial environments as powerful spatial engines.The paper contains an example of tracking and destruction of multiple cruise missiles by self-evolving spatial intelligence in SGL using networks of radar stations.It also briefs the growing multiple satellite constellation in Low Earth Orbits(LEO)for potential IAMD applications.Starting from Strategic Defense Initiative(SDI)of the past and then briefing the latest project of Space Development Agency,the paper shows SGL solutions for discovery,tracking,and destroying ballistic missiles and hypersonic gliders with the use of collectively behaving constellations of LEO satellites.It also shows how to organize higher levels of supervision of groups of mobile chasers fighting multiple targets(both potentially as missiles or drones),by providing their global awareness even consciousness in SGL which can drastically improve their performance.The latest version of SGT can be implemented on any platforms and put into operation in a short time,similarly to its previous versions in different countries.展开更多
It is generally impossible to obtain the analytic optimal guidance law for complex nonlinear guidance systems of homing missiles,and the open loop optimal guidance law is often obtained by numerical methods,which can ...It is generally impossible to obtain the analytic optimal guidance law for complex nonlinear guidance systems of homing missiles,and the open loop optimal guidance law is often obtained by numerical methods,which can not be used directly in practice.The neural networks are trained off line using the optimal trajectory of the missile produced by the numerical open loop optimal guidance law,and then,the converged neural networks are used on line as the feedback optimal guidance law in real time.The research shows that different selections of the neural networks inputs,such as the system state variables or the rate of LOS(line of sight),may have great effect on the performances of the guidance systems for homing missiles.The robustness for several guidance laws is investigated by simulations,and the modular neural networks architectures are used to increase the approximating and generalizing abilities in the large state space.Some useful conclusions are obtained by simulation results.展开更多
文摘In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.
文摘For the high altitude cruising flight phase of a hypersonic cruise missile (HCM), a relative motion mod- el between the missile and the target is established by defining virtual target and combining the theory of the dif- ferential geometry with missile motion equations. Based on the model, the motion between the missile and the tar- get is considered as a single target differential game problem, and a new open-loop differential game midcourse guidance law (DGMGL) is deduced by solving the corresponding Hamiltonian Function. Meanwhile, a new struc- ture of a closed-loop DGMGL is presented and the training data for back propagation neural network (BPNN) are designed. By combining the theory of BPNN with the open-loop DGMGL obtained above, the law intelligence is realized. Finally, simulation is carried out and the validity of the law is testified.
基金supported by the National Natural Science Foundation of China(Grant No.12072090)。
文摘This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with uncertainties and observation noise.The attack-defense engagement scenario is modeled as a partially observable Markov decision process(POMDP).Given the benefits of recurrent neural networks(RNNs)in processing sequence information,an RNN layer is incorporated into the agent’s policy network to alleviate the bottleneck of traditional deep reinforcement learning methods while dealing with POMDPs.The measurements from the interceptor’s seeker during each guidance cycle are combined into one sequence as the input to the policy network since the detection frequency of an interceptor is usually higher than its guidance frequency.During training,the hidden states of the RNN layer in the policy network are recorded to overcome the partially observable problem that this RNN layer causes inside the agent.The training curves show that the proposed RRTD3 successfully enhances data efficiency,training speed,and training stability.The test results confirm the advantages of the RRTD3-based guidance laws over some conventional guidance laws.
文摘The models of noallnear systems are idendried by recmeive pedctive ermrs(RPE) methed based on thelayered neural networks. To improve the identification precision, gain callcient and arentUm factor are itheucedinto the algorithm for the data are dids by noses and vny suddnly. this lerthm is applied to the twcmedeiling of rolling and pitchng angles of ndssiles. Simulation results shoW tha the proposed algurithm is sultable forthe modelling of nodrinear systems.
文摘In order to study intelligent fault diagnosis methods based on fuzzy neural network (NN) expert system and build up intelligent fault diagnosis for a type of missile weapon system, the concrete implementation of a fuzzy NN fault diagnosis expert system is given in this paper. Based on thorough research of knowledge presentation, the intelligent fault diagnosis system is implemented with artificial intelligence for a large-scale missile weapon equipment. The method is an effective way to perform fuzzy fault diagnosis. Moreover, it provides a new way of the fault diagnosis for large-scale missile weapon equipment.
文摘Based on the analysis for the interception process of ship-to-air missile system to the anti-ship missile stream, the antagonism of ship-to-air missile and anti-ship missile stream was modeled by Monte Carlo method. This model containing the probability of acquiring anti-ship missile, threat estimation, firepower distribution, interception, effectiveness evaluation and firepower turning, can dynamically simulate the antagonism process of anti-ship missile attack stream and anti-air missile weapon system. The anti-ship missile's saturation attack stream for different ship-to-air missile systems can be calculated quantitatively. The simulated results reveal the relations among the anti-ship missile saturation attack and the attack intensity of anti-ship missile, interception mode and the main parameters of anti-air missile weapon system. It provides a theoretical basis for the effective operation of anti-ship missile.
文摘A high-level technology is revealed that can effectively convert any distributed system into a globally programmable machine capable of operating without central resources and self-recovering from indiscriminate damages. Integral mission scenarios in Distributed Scenario Language (DSL) can be injected from any point, runtime covering & grasping the whole system or its parts, setting operational infrastructures, and orienting local and global behavior in the way needed. Many operational scenarios can be simultaneously injected into this spatial machine from different points, cooperating or competing over the shared distributed knowledge as overlapping fields of solutions. Distributed DSL interpreter organization and benefits of using this technology for integrated air and missile defense are discussed along with programming examples in this and other fields.
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
文摘This paper relates to accepted presentation at international conference Air and Missile Defence Technology,November 16-17,2022,London UK(day two),reflecting contents of the presentation slides.It describes applications of the patented and internationally tested Spatial Grasp Technology(SGT)and its Spatial Grasp Language(SGL)for Integrated Air and Missile Defense(IAMD).Based on holistic space navigation and processing by recursive mobile code self-spreading in distributed words,SGT differs radically from traditional management of large systems as consisting of parts exchanging messages.The dynamic network of SGL interpreters can be arbitrarily large and cover terrestrial and celestial environments as powerful spatial engines.The paper contains an example of tracking and destruction of multiple cruise missiles by self-evolving spatial intelligence in SGL using networks of radar stations.It also briefs the growing multiple satellite constellation in Low Earth Orbits(LEO)for potential IAMD applications.Starting from Strategic Defense Initiative(SDI)of the past and then briefing the latest project of Space Development Agency,the paper shows SGL solutions for discovery,tracking,and destroying ballistic missiles and hypersonic gliders with the use of collectively behaving constellations of LEO satellites.It also shows how to organize higher levels of supervision of groups of mobile chasers fighting multiple targets(both potentially as missiles or drones),by providing their global awareness even consciousness in SGL which can drastically improve their performance.The latest version of SGT can be implemented on any platforms and put into operation in a short time,similarly to its previous versions in different countries.
文摘It is generally impossible to obtain the analytic optimal guidance law for complex nonlinear guidance systems of homing missiles,and the open loop optimal guidance law is often obtained by numerical methods,which can not be used directly in practice.The neural networks are trained off line using the optimal trajectory of the missile produced by the numerical open loop optimal guidance law,and then,the converged neural networks are used on line as the feedback optimal guidance law in real time.The research shows that different selections of the neural networks inputs,such as the system state variables or the rate of LOS(line of sight),may have great effect on the performances of the guidance systems for homing missiles.The robustness for several guidance laws is investigated by simulations,and the modular neural networks architectures are used to increase the approximating and generalizing abilities in the large state space.Some useful conclusions are obtained by simulation results.