期刊文献+
共找到1,512篇文章
< 1 2 76 >
每页显示 20 50 100
An Estimation Method for Relationship Strength in Weighted Social Network Graphs 被引量:6
1
作者 Xiang XLin Tao Shang Jianwei Liu 《Journal of Computer and Communications》 2014年第4期82-89,共8页
Previous works mainly focused on estimating direct relationship strength in social networks. If two users are not directly connected in a social network, there is no direct relationship. In order to estimate the relat... Previous works mainly focused on estimating direct relationship strength in social networks. If two users are not directly connected in a social network, there is no direct relationship. In order to estimate the relationship strength between two indirectly connected users as well as directly connected users, this paper proposes an estimation method for relationship strength in weighted social network graphs, which is based on the trust propagation strategy and the estimation of direct relationship strength. Our method considers the length of a relationship path, the number of relationship paths and the edge weights (direct relationship strength) along with a relationship path to estimate the strength of indirect relationship. Then it synthesizes the direct and indirect relationship strength to represent the strength of relationship between two users in social net- works. Thus our method can fully estimate the relationship strength between any two users in a social network no matter whether they are directly connected or not. 展开更多
关键词 SOCIAL networkS RELATIONSHIP strength Estimation
下载PDF
Neural network modeling to evaluate the dynamic flow stress of high strength armor steels under high strain rate compression 被引量:3
2
作者 Ravindranadh BOBBILI V.MADHU A.K.GOGIA 《Defence Technology(防务技术)》 SCIE EI CAS 2014年第4期334-342,共9页
An artificial neural network(ANN) constitutive model is developed for high strength armor steel tempered at 500 C, 600 C and 650 C based on high strain rate data generated from split Hopkinson pressure bar(SHPB) exper... An artificial neural network(ANN) constitutive model is developed for high strength armor steel tempered at 500 C, 600 C and 650 C based on high strain rate data generated from split Hopkinson pressure bar(SHPB) experiments. A new neural network configuration consisting of both training and validation is effectively employed to predict flow stress. Tempering temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on Johnsone Cook(Je C) model and neural network model is performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tempering temperatures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB, over a range of tempering temperatures(500e650 C), strains(0.05e0.2) and strain rates(1000e5500/s) are employed to formulate Je C model to predict the high strain rate deformation behavior of high strength armor steels. The J-C model and the back-propagation ANN model were developed to predict the high strain rate deformation behavior of high strength armor steel and their predictability is evaluated in terms of correlation coefficient(R) and average absolute relative error(AARE). R and AARE for the Je C model are found to be 0.7461 and 27.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. It was observed that the predictions by ANN model are in consistence with the experimental data for all tempering temperatures. 展开更多
关键词 人工神经网络模型 高应变率 高强度 装甲钢 流变应力 可预测性 压缩 评估
下载PDF
Fuzzy neural network analysis on gray cast iron with high tensile strength and thermal conductivity 被引量:1
3
作者 Gui-quan Wang Xiang Chen Yan-xiang Li 《China Foundry》 SCIE 2019年第3期190-197,共8页
To develop a high performance gray cast iron with high tensile strength and thermal conductivity, multivariable analysis of microstructural effects on properties of gray cast iron was performed. The concerned paramete... To develop a high performance gray cast iron with high tensile strength and thermal conductivity, multivariable analysis of microstructural effects on properties of gray cast iron was performed. The concerned parameters consisted of graphite content, maximum graphite length, primary dendrite percentage and microhardness of the matrix. Under the superposed influence of various parameters, the relationships between thermal conductivity and structural characteristics become irregular, as well as the effects of graphite length on the strength. An adaptive neuro-fuzzy inference system was built to link the parameters and properties. A sensitivity test was then performed to rank the relative impact of parameters. It was found that the dominant parameter for tensile strength is graphite content, while the most relative parameter for thermal conductivity is maximum graphite length. The most effective method to simultaneously improve the tensile and thermal conductivity of gray cast iron is to reduce the carbon equivalent and increase the length of graphite flakes. 展开更多
关键词 HIGH performance GRAY CAST iron fuzzy NEURAL network TENSILE strength thermal CONDUCTIVITY
下载PDF
Strength dynamics of weighted evolving networks 被引量:1
4
作者 吴建军 高自友 孙会君 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第1期47-50,共4页
In this paper, a simple model for the strength dynamics of weighted evolving networks is proposed to characterize the weighted networks. By considering the congestion effects, this approach can yield power law strengt... In this paper, a simple model for the strength dynamics of weighted evolving networks is proposed to characterize the weighted networks. By considering the congestion effects, this approach can yield power law strength distribution appeared on the many real weighted networks, such as traffic networks, internet networks. Besides, the relationship between strength and degree is given. Numerical simulations indicate that the strength distribution is strongly related to the strength dynamics decline. The model also provides us with a better description of the real weighted networks. 展开更多
关键词 strength dynamics WEIGHTED complex networks
下载PDF
Prediction of Sintering Strength for Selective Laser Sintering of Polystyrene Using Artificial Neural Network 被引量:4
5
作者 王传洋 姜宁 +2 位作者 陈再良 陈瑶 董渠 《Journal of Donghua University(English Edition)》 EI CAS 2015年第5期825-830,共6页
In the present work,a study is made to investigate the effects of process parameters,namely,laser power,scanning speed,hatch spacing, layer thickness and powder temperature, on the tensile strength for selective laser... In the present work,a study is made to investigate the effects of process parameters,namely,laser power,scanning speed,hatch spacing, layer thickness and powder temperature, on the tensile strength for selective laser sintering( SLS) of polystyrene( PS). Artificial neural network( ANN) methodology is employed to develop mathematical relationships between the process parameters and the output variable of the sintering strength. Experimental data are used to train and test the network. The present neural network model is applied to predicting the experimental outcome as a function of input parameters within a specified range. Predicted sintering strength using the trained back propagation( BP) network model showed quite a good agreement with measured ones. The results showed that the networks had high processing speed,the abilities of error-correcting and self-organizing. ANN models had favorable performance and proved to be an applicable tool for predicting sintering strength SLS of PS. 展开更多
关键词 selective laser sintering(SLS) polystyrene(PS) strength artificial neural network(ANN)
下载PDF
Mass concrete strength assessment method by Sonreb and Core combined method using artificial neural network
6
作者 王浩 宗周红 +1 位作者 胡若玫 张竞男 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第3期115-120,共6页
The Sonreb and Core (SRC) combined method is proposed to assess the concrete compression strength of mass concrete structures.Artificial neural network is employed together with the SRC combined method to obtain the o... The Sonreb and Core (SRC) combined method is proposed to assess the concrete compression strength of mass concrete structures.Artificial neural network is employed together with the SRC combined method to obtain the optimal core number.The artificial neural network is trained based on data from different testing methods.The procedure of using artificial neural network to assess the concrete strength is described.It proves that the SRC combined method is superior in many aspects and artificial the presented neural network has a high efficiency and reliability.The combined method using artificial intelligence is promising in the strength assessment of mass concrete structures such as the dam,the anchor of the suspension bridge,etc. 展开更多
关键词 REBOUND uitrasonic core. strength assessment: BP neural network
下载PDF
A Double Network Hydrogel with High Mechanical Strength and Shape Memory Properties 被引量:3
7
作者 Lei Zhu Chun-ming Xiong +3 位作者 Xiao-fen Tang Li-jun Wang Kang Peng Hai-yang Yang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第3期350-358,368,共10页
Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into t... Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into the conventional tough DN hydro-gel system.We synthesize the PEG-PDAC/P(AAm-co-AAc)DN hydrogels,of which the first network is a well-defined PEG(polyethylene glycol)network loaded with PDAC(poly(acryloyloxyethyltrimethyl ammonium chloride))strands,while the second network is formed by copolymerizing AAm(acrylamide)with AAc(acrylic acid)and cross-linker MBAA(N;N′-methylenebisacrylamide).The PEG-PDAC/P(AAm-co-AAc)DN gels exhibits high mechanical strength.The fracture stress and toughness of the DN gels reach up to 0.9 MPa and 3.8 MJ/m^3,respectively.Compared with the conventional double network hydrogels with neutral polymers as the soft and ductile second network,the PEG-PDAC/P(AAm-co-AAc)DN hydrogels use P(AAm-co-AAc),a weak polyelectrolyte,as the second network.The AAc units serve as the coordination points with Fe^3+ions and physically crosslink the second network,which realizes the shape memory property activated by the reducing ability of ascorbic acid.Our results indicate that the high mechanical strength and shape memory properties,probably the two most important characters related to the potential application of the hydrogels,can be introduced simultaneously into the DN hydrogels if the functional monomer has been integrated into the network of DN hydrogels smartly. 展开更多
关键词 DOUBLE network HYDROGEL WEAK POLYELECTROLYTE High mechanical strength Shape MEMORY properties
下载PDF
Prediction of the residual strength of clay using functional networks 被引量:2
8
作者 S.Z.Khan Shakti Suman +1 位作者 M.Pavani S.K.Das 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第1期67-74,共8页
Landslides are common natural hazards occurring in most parts of the world and have considerable adverse economic effects. Residual shear strength of clay is one of the most important factors in the determination of s... Landslides are common natural hazards occurring in most parts of the world and have considerable adverse economic effects. Residual shear strength of clay is one of the most important factors in the determination of stability of slopes or landslides. This effect is more pronounced in sensitive clays which show large changes in shear strength from peak to residual states. This study analyses the prediction of the residual strength of clay based on a new prediction model, functional networks(FN) using data available in the literature. The performance of FN was compared with support vector machine(SVM) and artificial neural network(ANN) based on statistical parameters like correlation coefficient(R), Nash–Sutcliff coefficient of efficiency(E), absolute average error(AAE), maximum average error(MAE) and root mean square error(RMSE). Based on R and E parameters, FN is found to be a better prediction tool than ANN for the given data. However, the R and E values for FN are less than SVM. A prediction equation is presented that can be used by practicing geotechnical engineers. A sensitivity analysis is carried out to ascertain the importance of various inputs in the prediction of the output. 展开更多
关键词 LANDSLIDES Residual strength Index properties Prediction model Functional networks
下载PDF
Ultimate Compressive Strength Prediction for Stiffened Panels by Counterpropagation Neural Networks(CPN)
9
作者 魏东 张圣坤 《China Ocean Engineering》 SCIE EI 1999年第3期335-342,共8页
Stiffened Panels are important strength members in ship and offshore structures. A new method based on counterpropagation neural networks (CPN) is proposed in this paper to predict the ultimate compressive strength of... Stiffened Panels are important strength members in ship and offshore structures. A new method based on counterpropagation neural networks (CPN) is proposed in this paper to predict the ultimate compressive strength of stiffened panels. Compared with two-parametric polynomial, this method can take more parameters into account and make more use of experimental data. Numerical study is carried out to verify the validation of this method. The new method may find wide application in practical design. 展开更多
关键词 stiffened panels ultimate strength counterpropagation neural networks
下载PDF
Topological probability and connection strength induced activity in complex neural networks
10
作者 韦笃取 张波 +1 位作者 丘东元 罗晓曙 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第10期204-208,共5页
Recent experimental evidence suggests that some brain activities can be assigned to small-world networks. In this work, we investigate how the topological probability p and connection strength C affect the activities ... Recent experimental evidence suggests that some brain activities can be assigned to small-world networks. In this work, we investigate how the topological probability p and connection strength C affect the activities of discrete neural networks with small-world (SW) connections. Network elements are described by two-dimensional map neurons (2DMNs) with the values of parameters at which no activity occurs. It is found that when the value of p is smaller or larger, there are no active neurons in the network, no matter what the value of connection strength is; for a given appropriate connection strength, there is an intermediate range of topological probability where the activity of 2DMN network is induced and enhanced. On the other hand, for a given intermediate topological probability level, there exists an optimal value of connection strength such that the frequency of activity reaches its maximum. The possible mechanism behind the action of topological probability and connection strength is addressed based on the bifurcation method. Furthermore, the effects of noise and transmission delay on the activity of neural network are also studied. 展开更多
关键词 topological probability small world connections connection strength neural networks activity
下载PDF
Periodic synchronization of community networks with non-identical nodes uncertain parameters and adaptive coupling strength
11
作者 柴元 陈立群 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期173-178,共6页
In this paper, we propose a novel approach for simultaneously identifying unknown parameters and synchronizing time-delayed complex community networks with nonidentical nodes. Based on the LaSalle's invariance princi... In this paper, we propose a novel approach for simultaneously identifying unknown parameters and synchronizing time-delayed complex community networks with nonidentical nodes. Based on the LaSalle's invariance principle, a cri- teflon is established by constructing an effective control identification scheme and adjusting automatically the adaptive coupling strength. The proposed control law is applied to a complex community network which is periodically synchro- nized with different chaotic states. Numerical simulations are conducted to demonstrate the feasibility of the proposed method. 展开更多
关键词 community networks periodic synchronization adaptive coupling strength uncertain parameters
下载PDF
基于拌和生产数据的BP神经网络混凝土抗压强度预测 被引量:1
12
作者 王海英 李子彤 +1 位作者 张英治 王晨光 《建筑科学与工程学报》 CAS 北大核心 2024年第3期18-25,共8页
为解决混凝土生产中抗压强度试验周期长及工程管理存在滞后性的问题,提出了一种基于混凝土拌和生产实时监控数据的BP神经网络混凝土抗压强度预测模型。以混凝土拌和生产中的8项物料生产称重数据和5项生产配比数据作为预测输入变量,建立... 为解决混凝土生产中抗压强度试验周期长及工程管理存在滞后性的问题,提出了一种基于混凝土拌和生产实时监控数据的BP神经网络混凝土抗压强度预测模型。以混凝土拌和生产中的8项物料生产称重数据和5项生产配比数据作为预测输入变量,建立200组混凝土拌和站生产监控数据和对应的抗压强度试验数据样本集,按照6∶2∶2比例划分为训练集、验证集和测试集;分别以C40配比混凝土拌和生产的8项物料称重数据和全部13项数据作为输入变量,进行混凝土28 d抗压强度预测,将预测结果与实际试验结果进行比较,验证所提出BP神经网络模型的预测效果。结果表明:所提出的BP神经网络混凝土强度预测模型能较好地实时预测混凝土28 d抗压强度,且相对误差优于利用7 d抗压强度试验数据估算值;8项物料称重数据作为输入变量的BP神经网络预测模型预测精度更好,平均绝对百分比误差为0.82%,均方根误差为0.52 MPa;利用不同拌和站C20配比、C30配比混凝土拌和生产监控数据对8项输入变量BP神经网络混凝土抗压强度预测模型进行适应性验证可知,其预测平均绝对误差均在0.5 MPa之内,平均绝对百分比误差均小于2%,与C40配比预测误差一致;该预测模型充分挖掘了混凝土拌和站生产实时监控数据的价值,实现了传统混凝土抗压试验结果提前化,对提高工程建设质量水平具有重要意义。 展开更多
关键词 混凝土 预测模型 BP神经网络 抗压强度 拌和生产监控数据
下载PDF
中高应变速率轧制AZ31镁合金板的抗拉强度预测
13
作者 朱必武 蒋昊 +4 位作者 刘筱 郭鹏程 魏福安 徐从昌 李落星 《中国有色金属学报》 EI CAS CSCD 北大核心 2024年第6期1998-2007,共10页
本文采集了不同轧制温度、应变速率以及压下量等三个工艺参数下中高应变速率轧制的AZ31镁合金抗拉强度的27组样本,通过惯性权重、学习因子的改进和引入变异操作对PSO-BP神经网络进行改进,并与BP、PSO-BP神经网络对比,进行抗拉强度的预... 本文采集了不同轧制温度、应变速率以及压下量等三个工艺参数下中高应变速率轧制的AZ31镁合金抗拉强度的27组样本,通过惯性权重、学习因子的改进和引入变异操作对PSO-BP神经网络进行改进,并与BP、PSO-BP神经网络对比,进行抗拉强度的预测。结果表明:BP神经网络不能预测AZ31镁合金抗拉强度的非线性变化,PSO-BP神经网络和改进的PSO-BP(IPSO-BP)神经网络均能较好地预测AZ31镁合金抗拉强度的非线性变化;这三个模型中IPSO-BP神经网络预测最为准确,相较于PSO-BP神经网络,其平均绝对误差从15.3764降低至3.4288,平均相对误差从5.94%降低至1.32%,均方误差从251.3662降低至20.7199,相关系数从0.7753提高至0.8937;通过Pearson相关性计算判断出应变速率、压下量对抗拉强度的影响均大于轧制温度,而应变速率与抗拉强度呈负相关关系,压下量与抗拉强度呈正相关关系。 展开更多
关键词 AZ31镁合金 神经网络 轧制工艺 抗拉强度 Pearson相关系数
下载PDF
信息网络地位与产业结构升级
14
作者 施炳展 张瑞恩 《东北师大学报(哲学社会科学版)》 北大核心 2024年第3期55-69,共15页
数字技术发展促使信息流动打破时空局限,形成信息网络并深刻影响经济主体效率。以往研究通过交通基础设施、企业生产等形成的城市网络,研究信息在城市之间流动对产业结构的影响,但这并非衡量城市信息网络的最直接方式。本文基于2011—2... 数字技术发展促使信息流动打破时空局限,形成信息网络并深刻影响经济主体效率。以往研究通过交通基础设施、企业生产等形成的城市网络,研究信息在城市之间流动对产业结构的影响,但这并非衡量城市信息网络的最直接方式。本文基于2011—2017年中国城市之间的日频百度搜索数据,构建了城市间信息网络,并用信息联系强度、信息多样性刻画信息网络地位特征,并讨论其对产业结构升级的影响。结果发现,信息联系强度和信息多样性促进了城市产业结构升级,且仅在中西部地区显著;省间信息网络作用大于省内;促进知识溢出、带动城市创业是信息网络产生影响的重要渠道。本文为中国构建网络空间命运共同体提供了经验依据,也为数字经济时代城市提升产业结构提供了可行路径。 展开更多
关键词 城市信息网络 信息联系强度 信息多样性 产业结构
下载PDF
基于RSSR融合RNGO-Elman神经网络的室内可见光定位
15
作者 张慧颖 盛美春 +2 位作者 梁士达 马成宇 李月月 《半导体光电》 CAS 北大核心 2024年第3期449-457,共9页
针对动态环境下基于接收信号强度的传统可见光定位方法定位精度低、稳定性差等问题,提出一种基于接收信号强度比的改进北方苍鹰算法(NGO)优化Elman神经网络(RNGOElman)的室内可见光定位系统。提出选择一个辅助参考点,将待测参考点与辅... 针对动态环境下基于接收信号强度的传统可见光定位方法定位精度低、稳定性差等问题,提出一种基于接收信号强度比的改进北方苍鹰算法(NGO)优化Elman神经网络(RNGOElman)的室内可见光定位系统。提出选择一个辅助参考点,将待测参考点与辅助参考点的接收信号强度比值和接收机的真实位置作为训练集数据,建立不受动态环境影响的指纹数据库。针对NGO算法收敛速度慢、容易陷入局部最优等问题,利用折射反向学习策略初始化种群,增加种群多样性,引入非线性权重因子来加快收敛速度,避免陷入局部最优。使用优化后的NGO算法来优化Elman神经网络的初始权值和阈值,构建RNGO-Elman动态定位预测模型。仿真结果表明,在4m×4m×3m的实验空间下,优化后的RNGO-Elman定位模型平均定位误差为1.34cm,定位精度相较于Elman定位算法、NGO-Elman定位算法分别提高了82%,21%。在LED发射功率波动时,基于RSSR的RNGO-Elman定位误差为1.29cm,1.38cm。所提可见光定位方法具有定位精度高、定位性能稳定等优点。 展开更多
关键词 光通信 北方苍鹰算法 ELMAN神经网络 接收信号强度比 可见光定位
下载PDF
基于ANN的HVFAC拉伸性能预测评价
16
作者 倪彤元 杜鑫 +3 位作者 莫云波 黄森乐 杨杨 刘金涛 《材料导报》 EI CAS CSCD 北大核心 2024年第10期75-83,共9页
基于人工神经网络(ANN)预测混凝土拉伸性能,对研究混凝土开裂机制具有重要意义。基于团队实验数据获得不同粉煤灰掺量、骨胶比、水胶比和养护龄期下大掺量粉煤灰混凝土(HVFAC)的抗压强度、极限拉伸应变、抗拉强度和拉伸弹性模量数据,用... 基于人工神经网络(ANN)预测混凝土拉伸性能,对研究混凝土开裂机制具有重要意义。基于团队实验数据获得不同粉煤灰掺量、骨胶比、水胶比和养护龄期下大掺量粉煤灰混凝土(HVFAC)的抗压强度、极限拉伸应变、抗拉强度和拉伸弹性模量数据,用均方根误差(RMSE)最小原则建立一种预测HVFAC拉伸性能的ANN模型,并用公开发表的文献数据对该预测模型可靠性进行分析评估。结果表明:模型预测结果与实验结果的相关系数均大于0.94,文献中的实验值与模型预测值的误差均在±20%以内,说明所建立的模型有较高的预测精度。基于ANN影响权重分析发现:骨胶比对HVFAC的抗压强度、极限拉伸应变和拉伸弹性模量的影响最大;对于HVFAC的拉伸性能,在早龄期时水胶比的影响程度较大,但随着龄期的延长,粉煤灰掺量的影响程度逐渐上升并超过水胶比。 展开更多
关键词 人工神经网络 粉煤灰混凝土 抗拉强度 弹性模量 极限拉伸应变
下载PDF
扩展卡尔曼滤波的改进蛇定位算法在WSN中的应用
17
作者 彭铎 刘明硕 谢堃 《无线电工程》 2024年第6期1489-1496,共8页
针对接收信号强度指示(Received Signal Strength Index,RSSI)定位易受到环境因素的影响,提出了一种基于RSSI扩展卡尔曼滤波的改进蛇定位算法(RSSI Extended Kalman Filter-based Improved Snake Optimization Localization Algorithm,R... 针对接收信号强度指示(Received Signal Strength Index,RSSI)定位易受到环境因素的影响,提出了一种基于RSSI扩展卡尔曼滤波的改进蛇定位算法(RSSI Extended Kalman Filter-based Improved Snake Optimization Localization Algorithm,RSSI-EISL)。该算法利用扩展卡尔曼滤波(Extended Kalman Filter,EKF)模型对RSSI信号值进行平滑处理,使其能够抑制噪声和异常值对估计结果的影响,从而提高测距的准确性和鲁棒性。通过引入Levy飞行和非线性收敛因子的改进蛇优化算法(Improved Snake Optimization Algorithm,ISO),提升了蛇优化算法(Snake Optimization Algorithm,SO)的寻优能力,使之能够更加准确地计算出待测节点的坐标。根据仿真结果显示,相较于基于RSSI最小二乘定位算法(RSSI Ordinary Least Squares Localization Algorithm,ROL)、基于RSSI EKF的灰狼定位算法(RSSI Extended Kalman Filter-based Grey Wolf Optimization Algorithm,REGL)和基于RSSI EKF的蛇定位算法(RSSI EKF-based Snake Optimization Localization Algorithm,RESL),RSSI-EISL的定位精度分别提高了26.4%、8.75%和5.6%,算法的收敛速度和全局搜索能力也有所提升。 展开更多
关键词 无线传感器网络 接收信号强度 蛇优化算法 扩展卡尔曼滤波 Levy飞行 非线性收敛因子
下载PDF
神经网络正逆预测结合的风力机叶片强度可靠性研究 被引量:1
18
作者 鞠浩 王旭东 陆佳红 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期291-298,共8页
针对风力机叶片在各基本随机变量相互影响下强度极限状态难以界定的问题,提出广义回归神经网络正逆预测结合的风力机叶片强度可靠性分析方法。通过神经网络逆预测模型估算叶片失效时各随机变量状态,利用有限元分析法校核后作为强化样本... 针对风力机叶片在各基本随机变量相互影响下强度极限状态难以界定的问题,提出广义回归神经网络正逆预测结合的风力机叶片强度可靠性分析方法。通过神经网络逆预测模型估算叶片失效时各随机变量状态,利用有限元分析法校核后作为强化样本用于神经网络正预测模型的训练。将该方法构建的神经网络模型与通过更多随机样本构建的模型进行比较。结果表明:前者的学习样本数量减少26%,测试集均方误差降低48.19%,平均绝对百分比误差降低58.24%,因此通过该方法构建的神经网络模型在叶片失效边界区域具有更好的预测性能。利用该模型计算叶片的强度可靠性,进一步验证了该方法的有效性。 展开更多
关键词 风力机 叶片 可靠性 神经网络 强度分析 优化设计
下载PDF
基于深度学习的可见光通信系统室内三维定位 被引量:1
19
作者 马玉磊 张兵 《光学技术》 CAS CSCD 北大核心 2024年第2期201-208,共8页
针对目前室内可见光通信系统三维定位的准确率与定位速度依然不佳的问题,提出一种基于深度学习的可见光通信系统室内定位方法。首先,设计了一个神经网络将指纹数据编码成二维阵列,利用卷积神经网络学习指纹阵列与目标位置之间的关系;然... 针对目前室内可见光通信系统三维定位的准确率与定位速度依然不佳的问题,提出一种基于深度学习的可见光通信系统室内定位方法。首先,设计了一个神经网络将指纹数据编码成二维阵列,利用卷积神经网络学习指纹阵列与目标位置之间的关系;然后,通过粒子群优化算法自动搜索卷积神经网络的超参数,以降低深度神经网络的训练难度。此外,设计了定位数据训练集、验证集与测试集的划分方法,有助于缓解神经网络的过拟合问题,并提高定位准确性。仿真结果表明,所提方法在6×6×4m3室内环境下的平均定位误差为0.024m,平均定位时间为0.478s。 展开更多
关键词 可见光通信系统 室内定位 信号强度检测 前馈神经网络 卷积神经网络 指纹正则化
下载PDF
不同干预措施对阴道分娩产妇产后早期盆底肌力恢复的网状Meta分析
20
作者 张萍 卢琼芳 +1 位作者 梁艺 覃颖 《右江医学》 2024年第3期256-263,共8页
目的通过网状Meta分析评价不同干预措施对阴道产后盆底肌力恢复的效果。方法计算机检索Pubmed、Embase、Web of Science、中国知网、万方数据库和中国生物医学文献服务系统,搜集有关阴道分娩产妇产后早期康复的文献,检索时限设定为建库... 目的通过网状Meta分析评价不同干预措施对阴道产后盆底肌力恢复的效果。方法计算机检索Pubmed、Embase、Web of Science、中国知网、万方数据库和中国生物医学文献服务系统,搜集有关阴道分娩产妇产后早期康复的文献,检索时限设定为建库至2021年11月,采用Cochrance手册对纳入的文献进行风险评估,然后采用StataMP 14.2进行网状Meta分析。结果共纳入研究20项,涉及研究对象3537名产妇。网状Meta分析结果显示,对提高阴道分娩产妇盆底肌肌力临床效果排序依次为生物反馈训练+阴道哑铃训练、产后盆底功能锻炼(PFMT)+产后康复教育、PFMT+电刺激+生物反馈训练、PFMT+Bobath球训练、阴道哑铃训练、PFMT+电刺激、电刺激、PFMT+生活干预、PFMT、PFMT+产后瑜伽锻炼+会阴部按摩、产后常规护理。结论生物反馈训练+阴道哑铃训练对提高阴道分娩产妇产后盆底肌肌力效果最佳。 展开更多
关键词 阴道分娩产妇 盆底肌力 产后早期康复 网状Meta分析
下载PDF
上一页 1 2 76 下一页 到第
使用帮助 返回顶部