In recent years, the place occupied by the various manifestations of cyber-crime in companies has been considerable. Indeed, due to the rapid evolution of telecommunications technologies, companies, regardless of thei...In recent years, the place occupied by the various manifestations of cyber-crime in companies has been considerable. Indeed, due to the rapid evolution of telecommunications technologies, companies, regardless of their size or sector of activity, are now the target of advanced persistent threats. The Work 2035 study also revealed that cyber crimes (such as critical infrastructure hacks) and massive data breaches are major sources of concern. Thus, it is important for organizations to guarantee a minimum level of security to avoid potential attacks that can cause paralysis of systems, loss of sensitive data, exposure to blackmail, damage to reputation or even a commercial harm. To do this, among other means, hardening is used, the main objective of which is to reduce the attack surface within a company. The execution of the hardening configurations as well as the verification of these are carried out on the servers and network equipment with the aim of reducing the number of openings present by keeping only those which are necessary for proper operation. However, nowadays, in many companies, these tasks are done manually. As a result, the execution and verification of hardening configurations are very often subject to potential errors but also highly consuming human and financial resources. The problem is that it is essential for operators to maintain an optimal level of security while minimizing costs, hence the interest in automating hardening processes and verifying the hardening of servers and network equipment. It is in this logic that we propose within the framework of this work the reinforcement of the security of the information systems (IS) by the automation of the mechanisms of hardening. In our work, we have, on the one hand, set up a hardening procedure in accordance with international security standards for servers, routers and switches and, on the other hand, designed and produced a functional application which makes it possible to: 1) Realise the configuration of the hardening;2) Verify them;3) Correct the non conformities;4) Write and send by mail a verification report for the configurations;5) And finally update the procedures of hardening. Our web application thus created allows in less than fifteen (15) minutes actions that previously took at least five (5) hours of time. This allows supervised network operators to save time and money, but also to improve their security standards in line with international standards.展开更多
To diagnose the aeroengine faults accurately,the supervised Kohonen(S-Kohonen)network is proposed for fault diagnosis.Via adding the output layer behind competitive layer,the network was modified from the unsupervised...To diagnose the aeroengine faults accurately,the supervised Kohonen(S-Kohonen)network is proposed for fault diagnosis.Via adding the output layer behind competitive layer,the network was modified from the unsupervised structure to the supervised structure.Meanwhile,the hybrid particle swarm optimization(H-PSO)was used to optimize the connection weights,after using adaptive inheritance mode(AIM)based on the elite strategy,and adaptive detecting response mechanism(ADRM),HPSO could guide the particles adaptively jumping out of the local solution space,and ensure obtaining the global optimal solution with higher probability.So the optimized S-Kohonen network could overcome the problems of non-identifiability for recognizing the unknown samples,and the non-uniqueness for classification results existing in traditional Kohonen(T-Kohonen)network.The comparison study on the GE90 engine borescope image texture feature recognition is carried out,the research results show that:the optimized S-Kohonen network has a strong ability of practical application in the classification fault diagnosis;the classification accuracy is higher than the common neural network model.展开更多
Localizing network legal supervision based on national conditions, legal traditions and the needs of economic and political development is the basis to manage and administrate the network by law. Adjusted to media con...Localizing network legal supervision based on national conditions, legal traditions and the needs of economic and political development is the basis to manage and administrate the network by law. Adjusted to media convergence and the needs of network cultural industry development, China has made the lawmaking of media transform from practical service oriented management to functional oriented management of media. This strategy aims to prevent network medium risk effectively according to network communication regularity.展开更多
According to AQSIQ, it has made an effort to popularize the launching ofelectronic ''network for product quality supervision in the whole nation. China Product QualitySupervision Electronic Network is a nation...According to AQSIQ, it has made an effort to popularize the launching ofelectronic ''network for product quality supervision in the whole nation. China Product QualitySupervision Electronic Network is a nation-wide network, which employs modern informationtechnology, network technology and encoding technology to supervise enterprises'' products in anelectronic way. The new system labels digital information on all items of products that are includedin the network.展开更多
To rationalize the design of D-π-A type organic small-molecule nonlinear optical materials,a theory guided machine learning framework is constructed.Such an approach is based on the recognition that the optical prope...To rationalize the design of D-π-A type organic small-molecule nonlinear optical materials,a theory guided machine learning framework is constructed.Such an approach is based on the recognition that the optical property of the molecule is predictable upon accumulating the contribution of each component,which is in line with the concept of group contribution method in thermodynamics.To realize this,a Lewis-mode group contribution method(LGC)has been developed in this work,which is combined with the multistage Bayesian neural network and the evolutionary algorithm to constitute an interactive framework(LGC-msBNN-EA).Thus,different optical properties of molecules are afforded accurately and efficientlyby using only a small data set for training.Moreover,by employing the EA model designed specifically for LGC,structural search is well achievable.The origins of the satisfying performance of the framework are discussed in detail.Considering that such a framework combines chemical principles and data-driven tools,most likely,it will be proven to be rational and efficient to complete mission regarding structure design in related fields.展开更多
The presented research aims to design a new prevention class(P)in the HIV nonlinear system,i.e.,the HIPV model.Then numerical treatment of the newly formulated HIPV model is portrayed handled by using the strength of ...The presented research aims to design a new prevention class(P)in the HIV nonlinear system,i.e.,the HIPV model.Then numerical treatment of the newly formulated HIPV model is portrayed handled by using the strength of stochastic procedure based numerical computing schemes exploiting the artificial neural networks(ANNs)modeling legacy together with the optimization competence of the hybrid of global and local search schemes via genetic algorithms(GAs)and active-set approach(ASA),i.e.,GA-ASA.The optimization performances through GA-ASA are accessed by presenting an error-based fitness function designed for all the classes of the HIPV model and its corresponding initial conditions represented with nonlinear systems of ODEs.To check the exactness of the proposed stochastic scheme,the comparison of the obtained results and Adams numerical results is performed.For the convergence measures,the learning curves are presented based on the different contact rate values.Moreover,the statistical performances through different operators indicate the stability and reliability of the proposed stochastic scheme to solve the novel designed HIPV model.展开更多
Soft sensors are widely used to predict quality variables which are usually hard to measure.It is necessary to construct an adaptive model to cope with process non-stationaries.In this study,a novel quality-related lo...Soft sensors are widely used to predict quality variables which are usually hard to measure.It is necessary to construct an adaptive model to cope with process non-stationaries.In this study,a novel quality-related locally weighted soft sensing method is designed for non-stationary processes based on a Bayesian network with latent variables.Specifically,a supervised Bayesian network is proposed where quality-oriented latent variables are extracted and further applied to a double-layer similarity meas-urement algorithm.The proposed soft sensing method tries to find a general approach for non-stationary processes via quality-related information where the concepts of local similarities and window confidence are explained in detail.The performance of the developed method is demonstrated by application to a numerical example and a debutanizer column.It is shown that the proposed method outperforms competitive methods in terms of the accuracy of predicting key quality variables.展开更多
Zero defection manufacturing (ZDM) is the pursuit of the manufacturing industry. However, there is a lack of the implementation method of ZDM in the multi-stage manufacturing process (MMP). Implementing ZDM and contro...Zero defection manufacturing (ZDM) is the pursuit of the manufacturing industry. However, there is a lack of the implementation method of ZDM in the multi-stage manufacturing process (MMP). Implementing ZDM and controlling product quality in MMP remains an urgent problem in intelligent manufacturing. A novel predict-prevention quality control method in MMP towards ZDM is proposed, including quality characteristics monitoring, key quality characteristics prediction, and assembly quality optimization. The stability of the quality characteristics is detected by analyzing the distribution of quality characteristics. By considering the correlations between different quality characteristics, a deep supervised long-short term memory (SLSTM) prediction network is built for time series prediction of quality characteristics. A long-short term memory-genetic algorithm (LSTM-GA) network is proposed to optimize the assembly quality. By utilizing the proposed quality control method in MMP, unqualified products can be avoided, and ZDM of MMP is implemented. Extensive empirical evaluations on the MMP of compressors validate the applicability and practicability of the proposed method.展开更多
文摘In recent years, the place occupied by the various manifestations of cyber-crime in companies has been considerable. Indeed, due to the rapid evolution of telecommunications technologies, companies, regardless of their size or sector of activity, are now the target of advanced persistent threats. The Work 2035 study also revealed that cyber crimes (such as critical infrastructure hacks) and massive data breaches are major sources of concern. Thus, it is important for organizations to guarantee a minimum level of security to avoid potential attacks that can cause paralysis of systems, loss of sensitive data, exposure to blackmail, damage to reputation or even a commercial harm. To do this, among other means, hardening is used, the main objective of which is to reduce the attack surface within a company. The execution of the hardening configurations as well as the verification of these are carried out on the servers and network equipment with the aim of reducing the number of openings present by keeping only those which are necessary for proper operation. However, nowadays, in many companies, these tasks are done manually. As a result, the execution and verification of hardening configurations are very often subject to potential errors but also highly consuming human and financial resources. The problem is that it is essential for operators to maintain an optimal level of security while minimizing costs, hence the interest in automating hardening processes and verifying the hardening of servers and network equipment. It is in this logic that we propose within the framework of this work the reinforcement of the security of the information systems (IS) by the automation of the mechanisms of hardening. In our work, we have, on the one hand, set up a hardening procedure in accordance with international security standards for servers, routers and switches and, on the other hand, designed and produced a functional application which makes it possible to: 1) Realise the configuration of the hardening;2) Verify them;3) Correct the non conformities;4) Write and send by mail a verification report for the configurations;5) And finally update the procedures of hardening. Our web application thus created allows in less than fifteen (15) minutes actions that previously took at least five (5) hours of time. This allows supervised network operators to save time and money, but also to improve their security standards in line with international standards.
基金Joint Funds of the National Natural Science Foundation of China(NSAF)(No.U1330130)General Program of Civil Aviation Flight University of China(No.J2015-39)
文摘To diagnose the aeroengine faults accurately,the supervised Kohonen(S-Kohonen)network is proposed for fault diagnosis.Via adding the output layer behind competitive layer,the network was modified from the unsupervised structure to the supervised structure.Meanwhile,the hybrid particle swarm optimization(H-PSO)was used to optimize the connection weights,after using adaptive inheritance mode(AIM)based on the elite strategy,and adaptive detecting response mechanism(ADRM),HPSO could guide the particles adaptively jumping out of the local solution space,and ensure obtaining the global optimal solution with higher probability.So the optimized S-Kohonen network could overcome the problems of non-identifiability for recognizing the unknown samples,and the non-uniqueness for classification results existing in traditional Kohonen(T-Kohonen)network.The comparison study on the GE90 engine borescope image texture feature recognition is carried out,the research results show that:the optimized S-Kohonen network has a strong ability of practical application in the classification fault diagnosis;the classification accuracy is higher than the common neural network model.
文摘Localizing network legal supervision based on national conditions, legal traditions and the needs of economic and political development is the basis to manage and administrate the network by law. Adjusted to media convergence and the needs of network cultural industry development, China has made the lawmaking of media transform from practical service oriented management to functional oriented management of media. This strategy aims to prevent network medium risk effectively according to network communication regularity.
文摘According to AQSIQ, it has made an effort to popularize the launching ofelectronic ''network for product quality supervision in the whole nation. China Product QualitySupervision Electronic Network is a nation-wide network, which employs modern informationtechnology, network technology and encoding technology to supervise enterprises'' products in anelectronic way. The new system labels digital information on all items of products that are includedin the network.
基金support by the Key Research and Development Program of Zhejiang Province(2023C01102,2023C01208,2022C01208)。
文摘To rationalize the design of D-π-A type organic small-molecule nonlinear optical materials,a theory guided machine learning framework is constructed.Such an approach is based on the recognition that the optical property of the molecule is predictable upon accumulating the contribution of each component,which is in line with the concept of group contribution method in thermodynamics.To realize this,a Lewis-mode group contribution method(LGC)has been developed in this work,which is combined with the multistage Bayesian neural network and the evolutionary algorithm to constitute an interactive framework(LGC-msBNN-EA).Thus,different optical properties of molecules are afforded accurately and efficientlyby using only a small data set for training.Moreover,by employing the EA model designed specifically for LGC,structural search is well achievable.The origins of the satisfying performance of the framework are discussed in detail.Considering that such a framework combines chemical principles and data-driven tools,most likely,it will be proven to be rational and efficient to complete mission regarding structure design in related fields.
文摘The presented research aims to design a new prevention class(P)in the HIV nonlinear system,i.e.,the HIPV model.Then numerical treatment of the newly formulated HIPV model is portrayed handled by using the strength of stochastic procedure based numerical computing schemes exploiting the artificial neural networks(ANNs)modeling legacy together with the optimization competence of the hybrid of global and local search schemes via genetic algorithms(GAs)and active-set approach(ASA),i.e.,GA-ASA.The optimization performances through GA-ASA are accessed by presenting an error-based fitness function designed for all the classes of the HIPV model and its corresponding initial conditions represented with nonlinear systems of ODEs.To check the exactness of the proposed stochastic scheme,the comparison of the obtained results and Adams numerical results is performed.For the convergence measures,the learning curves are presented based on the different contact rate values.Moreover,the statistical performances through different operators indicate the stability and reliability of the proposed stochastic scheme to solve the novel designed HIPV model.
基金the National Key Research and Development Program of China(No.2016YFC0301404)the National Natural Science Foundation of China(Nos.51379198 and 61903352)+5 种基金the Natural Science Foundation of Zhejiang Province,China(No.LQ19F030007)the Natural Science Foundation of Jiangsu Province,China(No.BK20180594)the Project of Department of Education of Zhejiang Province,China(No.Y202044960)the China Postdoctoral Science Foundation(No.2020M671721)the Foundation of Key Laboratory of Advanced Process Control for Light Industry(No.APCLI1803)the Fundamental Research Funds for the Provincial Universities of Zhejiang,China(Nos.2021YW18 and 2021YW80)。
文摘Soft sensors are widely used to predict quality variables which are usually hard to measure.It is necessary to construct an adaptive model to cope with process non-stationaries.In this study,a novel quality-related locally weighted soft sensing method is designed for non-stationary processes based on a Bayesian network with latent variables.Specifically,a supervised Bayesian network is proposed where quality-oriented latent variables are extracted and further applied to a double-layer similarity meas-urement algorithm.The proposed soft sensing method tries to find a general approach for non-stationary processes via quality-related information where the concepts of local similarities and window confidence are explained in detail.The performance of the developed method is demonstrated by application to a numerical example and a debutanizer column.It is shown that the proposed method outperforms competitive methods in terms of the accuracy of predicting key quality variables.
基金The research work presented in this paper is supported by the National Natural Science Foundation of China(Grant No.51675418).
文摘Zero defection manufacturing (ZDM) is the pursuit of the manufacturing industry. However, there is a lack of the implementation method of ZDM in the multi-stage manufacturing process (MMP). Implementing ZDM and controlling product quality in MMP remains an urgent problem in intelligent manufacturing. A novel predict-prevention quality control method in MMP towards ZDM is proposed, including quality characteristics monitoring, key quality characteristics prediction, and assembly quality optimization. The stability of the quality characteristics is detected by analyzing the distribution of quality characteristics. By considering the correlations between different quality characteristics, a deep supervised long-short term memory (SLSTM) prediction network is built for time series prediction of quality characteristics. A long-short term memory-genetic algorithm (LSTM-GA) network is proposed to optimize the assembly quality. By utilizing the proposed quality control method in MMP, unqualified products can be avoided, and ZDM of MMP is implemented. Extensive empirical evaluations on the MMP of compressors validate the applicability and practicability of the proposed method.