In this work, we conduct a research on the effects of the details of the terrain on the path establishment in wireless networks. We discuss how the terrain induced variations, that are unavoidably caused by the obstru...In this work, we conduct a research on the effects of the details of the terrain on the path establishment in wireless networks. We discuss how the terrain induced variations, that are unavoidably caused by the obstructions and irregularities in the surroundings of the transmitting and the receiving antennas, have two distinct effects on the network. Firstly, they reduce the amount of links in the network connectivity graph causing it to behave more randomly, while decreasing the coverage and capacity of the network. Secondly, they increase the length of the established paths between the nodes. The presented results show how the terrain oblique influences the layout of the network connectivity graph, in terms of different network metrics, and gives insight to the appropriate level of details needed to describe the terrain in order to obtain results that will be satisfyingly accurate.展开更多
Focusing on the peculiarities of urban construction resulting from specific mountain terrains, the purpose of this study is to find out a suitable method based on a Spatial Network Comprehensive Model(SNCM) to reasona...Focusing on the peculiarities of urban construction resulting from specific mountain terrains, the purpose of this study is to find out a suitable method based on a Spatial Network Comprehensive Model(SNCM) to reasonably plan and distribute primary schools in low-income mountain cities. The construction principles and advantages of the SNCM method are proposed and the method tested in Wanyuan city of Qinba Mountain area(Southwest China) to verify its feasibility and optimization. Taking account of the mountain terrain and its influence on user behavior, we used the SNCM method to build a comprehensive model which integrates the road slope and the walking speed of pupils into the basic spatial model. The model is used to calculate a reasonable layout of the primary schools and to validate the rationale. The results show that the SNCM method can be effectively applied in low-income mountainous cities. It can not only improve the accessibility and service efficiency of primary schools using as little capital-investment as possible, but also help the city grow in an intensive and efficient way.展开更多
In the preprocessing phase, the global terrain model is partitioned into blocks with their feature points being picked out to generate TIN model for each terrain block, then the multi-resolution models of terrain orga...In the preprocessing phase, the global terrain model is partitioned into blocks with their feature points being picked out to generate TIN model for each terrain block, then the multi-resolution models of terrain organized in the form of quad-tree is created bottom-up. Cracks between terrain blocks are avoided by inserting vertices to form common boundaries. At run-time, a view-dependent LOD algorithm is used to control the loading and unloading of the proper blocks by an additional synchronous thread. To eliminate the artifacts created by LOD transitions, geomorphing is used in real-time. These rendering strategies increase the throughput of GPU and avoid imbalance of load among CPU, GPU and Disk I/O. Experimental results show that the system can perform visually smooth rendering of large-scale terrain scenes with fine quality at an average rate of 80 fps.展开更多
Augmented reality is the merging of synthetic sensory information into a user's perception of a real environment. As one of the most important tasks in augmented scene modeling, terrain simplification research has...Augmented reality is the merging of synthetic sensory information into a user's perception of a real environment. As one of the most important tasks in augmented scene modeling, terrain simplification research has gained more and more attention. In this paper, we mainly focus on point selection problem in terrain simplification using triangulated irregular network. Based on the analysis and comparison of traditional importance measures for each input point, we put forward a new importance measure based on local entropy. The results demonstrate that the local entropy criterion has a better performance than any traditional methods. In addition, it can effectively conquer the 'short-sight' problem associated with the traditional methods.展开更多
Deployment of sensors in any irregular terrain with 100% coverage and connectivity is a challenging issue in the field of Wireless Sensor Networks. Traditional deployments often assume homogeneous environments, which ...Deployment of sensors in any irregular terrain with 100% coverage and connectivity is a challenging issue in the field of Wireless Sensor Networks. Traditional deployments often assume homogeneous environments, which ignore the effect of terrain profile as well as the in-network obstacles situated randomly like buildings, trees, roads and so on. Proper deployment of sensors in such irregular region and its corresponding routing is one of the most fundamental challenges of Wireless Sensor Networks. In this work, we have considered that the terrain is irregular in shape and there may be obstacles within the terrain in any random position with any random shape, which is the reality in real world. With this novel framework, we have shown that an opti-mum deployment can be achieved in such irregular terrain without compromising coverage as well as con-nectivity between the sensor nodes for effective routing.展开更多
文摘In this work, we conduct a research on the effects of the details of the terrain on the path establishment in wireless networks. We discuss how the terrain induced variations, that are unavoidably caused by the obstructions and irregularities in the surroundings of the transmitting and the receiving antennas, have two distinct effects on the network. Firstly, they reduce the amount of links in the network connectivity graph causing it to behave more randomly, while decreasing the coverage and capacity of the network. Secondly, they increase the length of the established paths between the nodes. The presented results show how the terrain oblique influences the layout of the network connectivity graph, in terms of different network metrics, and gives insight to the appropriate level of details needed to describe the terrain in order to obtain results that will be satisfyingly accurate.
基金funded by the National Social Science Foundation of Chongqing (Grants No. 2016YBJJ031)
文摘Focusing on the peculiarities of urban construction resulting from specific mountain terrains, the purpose of this study is to find out a suitable method based on a Spatial Network Comprehensive Model(SNCM) to reasonably plan and distribute primary schools in low-income mountain cities. The construction principles and advantages of the SNCM method are proposed and the method tested in Wanyuan city of Qinba Mountain area(Southwest China) to verify its feasibility and optimization. Taking account of the mountain terrain and its influence on user behavior, we used the SNCM method to build a comprehensive model which integrates the road slope and the walking speed of pupils into the basic spatial model. The model is used to calculate a reasonable layout of the primary schools and to validate the rationale. The results show that the SNCM method can be effectively applied in low-income mountainous cities. It can not only improve the accessibility and service efficiency of primary schools using as little capital-investment as possible, but also help the city grow in an intensive and efficient way.
基金Supported by National High Technology Research and Development Program(863) of China (2006AA01Z319)
文摘In the preprocessing phase, the global terrain model is partitioned into blocks with their feature points being picked out to generate TIN model for each terrain block, then the multi-resolution models of terrain organized in the form of quad-tree is created bottom-up. Cracks between terrain blocks are avoided by inserting vertices to form common boundaries. At run-time, a view-dependent LOD algorithm is used to control the loading and unloading of the proper blocks by an additional synchronous thread. To eliminate the artifacts created by LOD transitions, geomorphing is used in real-time. These rendering strategies increase the throughput of GPU and avoid imbalance of load among CPU, GPU and Disk I/O. Experimental results show that the system can perform visually smooth rendering of large-scale terrain scenes with fine quality at an average rate of 80 fps.
基金This paper is supported by the State Key Laboratory for Image Processing & Intelligent Control (No. TKLJ9903) National Defe
文摘Augmented reality is the merging of synthetic sensory information into a user's perception of a real environment. As one of the most important tasks in augmented scene modeling, terrain simplification research has gained more and more attention. In this paper, we mainly focus on point selection problem in terrain simplification using triangulated irregular network. Based on the analysis and comparison of traditional importance measures for each input point, we put forward a new importance measure based on local entropy. The results demonstrate that the local entropy criterion has a better performance than any traditional methods. In addition, it can effectively conquer the 'short-sight' problem associated with the traditional methods.
文摘Deployment of sensors in any irregular terrain with 100% coverage and connectivity is a challenging issue in the field of Wireless Sensor Networks. Traditional deployments often assume homogeneous environments, which ignore the effect of terrain profile as well as the in-network obstacles situated randomly like buildings, trees, roads and so on. Proper deployment of sensors in such irregular region and its corresponding routing is one of the most fundamental challenges of Wireless Sensor Networks. In this work, we have considered that the terrain is irregular in shape and there may be obstacles within the terrain in any random position with any random shape, which is the reality in real world. With this novel framework, we have shown that an opti-mum deployment can be achieved in such irregular terrain without compromising coverage as well as con-nectivity between the sensor nodes for effective routing.