期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Application of Improved PSO-LSSVM on Network Threat Detection 被引量:4
1
作者 QI Fumin XIE Xiaoyao JING Fengxuan 《Wuhan University Journal of Natural Sciences》 CAS 2013年第5期418-426,共9页
To solve the problem of the design of classifier in network threat detection, we conduct a simulation experiment for the parameters’ optimal on least squares support vector machine (LSSVM) using the classic PSO alg... To solve the problem of the design of classifier in network threat detection, we conduct a simulation experiment for the parameters’ optimal on least squares support vector machine (LSSVM) using the classic PSO algorithm, and the experiment shows that uneven distribution of the initial particle swarm exerts a great impact on the results of LSSVM algorithm’s classification. This article proposes an improved PSO-LSSVM algorithm based on Divide-and-Conquer (DCPSO- LSSVM) to split the optimal domain where the parameters of LSSVM are in. It can achieve the purpose of distributing the initial particles uniformly. And using the idea of Divide-and-Conquer, it can split a big problem into multiple sub-problems, thus, completing problems’ modularization Meanwhile, this paper introduces variation factors to make the particles escape from the local optimum. The results of experiment prove that DCPSO-LSSVM has better effect on classification of network threat detection compared with SVM and classic PSOLSSVM. 展开更多
关键词 DIVIDE-AND-CONQUER least squares support vector machine (LSSVM) improved PSO CLASSIFICATION network threat detection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部