Network topology inference is one of the important applications of network tomography.Traditional network topology inference may impact network normal operation due to its generation of huge data traffic.A unicast net...Network topology inference is one of the important applications of network tomography.Traditional network topology inference may impact network normal operation due to its generation of huge data traffic.A unicast network topology inference is proposed to use time to live(TTL)for layering and classify nodes layer by layer based on the similarity of node pairs.Finally,the method infers logical network topology effectively with self-adaptive combination of previous results.Simulation results show that the proposed method holds a high accuracy of topology inference while decreasing network measuring flow,thus improves measurement efficiency.展开更多
When paths share a common congested link, they will all suffer from a performance degradation. Boolean tomography exploits these performance-level correlations between different paths to identify the congested links. ...When paths share a common congested link, they will all suffer from a performance degradation. Boolean tomography exploits these performance-level correlations between different paths to identify the congested links. It is clear that the congestion of a path will be distinctly intensive when it traverses multiple congested links. We adopt an enlarged state space model to mirror different congestion levels and employ a system of integer equations, instead of Boolean equations, to describe relationships between the path states and the link states. We recast the problem of identifying congested links into a constraint optimization problem, including Boolean tomography as a special case. For a logical tree, we propose an up-to-bottom algorithm and prove that it always achieves a solution to the problem. Compared with existing algorithms, the simulation results show that our proposed algorithm achieves a higher detection rate while keeping a low false positive rate.展开更多
基金supported by the National Natural Science Foundation of China (Nos.61373137,61373017, 61373139)the Major Program of Jiangsu Higher Education Institutions (No.14KJA520002)+1 种基金the Six Industries Talent Peaks Plan of Jiangsu(No.2013-DZXX-014)the Jiangsu Qinglan Project
文摘Network topology inference is one of the important applications of network tomography.Traditional network topology inference may impact network normal operation due to its generation of huge data traffic.A unicast network topology inference is proposed to use time to live(TTL)for layering and classify nodes layer by layer based on the similarity of node pairs.Finally,the method infers logical network topology effectively with self-adaptive combination of previous results.Simulation results show that the proposed method holds a high accuracy of topology inference while decreasing network measuring flow,thus improves measurement efficiency.
基金This work was partly supported by the National Natural Science Foundation of China under Grant Nos. 61171091 and 91438120, the Young Scientists Fund of the National Natural Science Foundation of China under Grant No. 61201127, the Fundamental Research Funds for Central Universities of China under Grant Nos. ZYGX2012J005 and 2014SCU11013, and the Science and Technology on Communication Security Laboratory under Grant No. 9140Cl10503140C11054.
文摘When paths share a common congested link, they will all suffer from a performance degradation. Boolean tomography exploits these performance-level correlations between different paths to identify the congested links. It is clear that the congestion of a path will be distinctly intensive when it traverses multiple congested links. We adopt an enlarged state space model to mirror different congestion levels and employ a system of integer equations, instead of Boolean equations, to describe relationships between the path states and the link states. We recast the problem of identifying congested links into a constraint optimization problem, including Boolean tomography as a special case. For a logical tree, we propose an up-to-bottom algorithm and prove that it always achieves a solution to the problem. Compared with existing algorithms, the simulation results show that our proposed algorithm achieves a higher detection rate while keeping a low false positive rate.