期刊文献+
共找到15,374篇文章
< 1 2 250 >
每页显示 20 50 100
Research on the Application of Computer Network Technology in Electronic Information Engineering 被引量:1
1
作者 Zhiwu Cui 《Journal of Electronic Research and Application》 2022年第3期1-5,共5页
Computer network technology has a very important role in electronic information engineering.The application of this technology not only enriches the traditional information engineering functions,but also effectively g... Computer network technology has a very important role in electronic information engineering.The application of this technology not only enriches the traditional information engineering functions,but also effectively guarantees the efficiency and quality.At present,due to the wide variety of external information that Chinese citizens are exposed to,in addition to the variegated and mixed content,it is easy for information to be leaked or stolen.In order to avoid similar situations,it is necessary for people to pay more attention to network system security,so as to ensure that the quality of life of citizens can be guaranteed.In view of that,this paper discusses and analyzes the application of computer network technology in electronic information engineering. 展开更多
关键词 computer network technology Electronic information engineering Application and management
下载PDF
Application Strategy of Computer Network Technology in Electronic Information Engineering
2
作者 Qiulai Du Haijun Huang 《International Journal of Technology Management》 2017年第4期4-6,共3页
This paper discussed the application strategy of the computer network technology in the electronic information engineering. The use of computer network management technology, designed to maximize the effectiveness of ... This paper discussed the application strategy of the computer network technology in the electronic information engineering. The use of computer network management technology, designed to maximize the effectiveness of computer network operations, while ensuring network management security. With the advent of the digital age, the computer network has been basically popular, so the computer network management technology research value and application value is more prominent become a digital information technology research one of the hot spots.. Good antivirus software can be easily installed in a few minutes to each NT server in the organization, and can be downloaded and distributed to all the target machine, set by the network administrator and management, it will work with the operating system and other security measures are tightly integrated to become part of the network security management, and automatically provide the best network virus defense measures. In the future, more integration of the methodologies will be considered and discussed. 展开更多
关键词 Application Strategy computer network Electronic Information engineering.
下载PDF
Research on Coordinated Development and Optimization of Distribution Networks at All Levels in Distributed Power Energy Engineering 被引量:1
3
作者 Zhuohan Jiang Jingyi Tu +2 位作者 Shuncheng Liu Jian Peng Guang Ouyang 《Energy Engineering》 EI 2023年第7期1655-1666,共12页
The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distribute... The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions.The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales. 展开更多
关键词 Distributed power generation energy engineering multiple time scales joint development of distribution network global optimization regional autonomy
下载PDF
Integrated Clustering and Routing Design and Triangle Path Optimization for UAV-Assisted Wireless Sensor Networks
4
作者 Shao Liwei Qian Liping +1 位作者 Wu Mengru Wu Yuan 《China Communications》 SCIE CSCD 2024年第4期178-192,共15页
With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated... With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated from monitoring and long-distance transmission places a heavy burden on sensor nodes with the limited battery power.For this,we investigate an unmanned aerial vehicles assisted mobile wireless sensor network(UAV-assisted WSN)to prolong the network lifetime in this paper.Specifically,we use UAVs to assist the WSN in collecting data.In the current UAV-assisted WSN,the clustering and routing schemes are determined sequentially.However,such a separate consideration might not maximize the lifetime of the whole WSN due to the mutual coupling of clustering and routing.To efficiently prolong the lifetime of the WSN,we propose an integrated clustering and routing scheme that jointly optimizes the clustering and routing together.In the whole network space,it is intractable to efficiently obtain the optimal integrated clustering and routing scheme.Therefore,we propose the Monte-Las search strategy based on Monte Carlo and Las Vegas ideas,which can generate the chain matrix to guide the algorithm to find the solution faster.Unnecessary point-to-point collection leads to long collection paths,so a triangle optimization strategy is then proposed that finds a compromise path to shorten the collection path based on the geometric distribution and energy of sensor nodes.To avoid the coverage hole caused by the death of sensor nodes,the deployment of mobile sensor nodes and the preventive mechanism design are indispensable.An emergency data transmission mechanism is further proposed to reduce the latency of collecting the latency-sensitive data due to the absence of UAVs.Compared with the existing schemes,the proposed scheme can prolong the lifetime of the UAVassisted WSN at least by 360%,and shorten the collection path of UAVs by 56.24%. 展开更多
关键词 Monte-Las search strategy triangle path optimization unmanned aerial vehicles wireless sensor networks
下载PDF
Using deep neural networks coupled with principal component analysis for ore production forecasting at open-pit mines
5
作者 Chengkai Fan Na Zhang +1 位作者 Bei Jiang Wei Victor Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期727-740,共14页
Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challe... Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines. 展开更多
关键词 Oil sands production Open-pit mining Deep learning Principal component analysis(PCA) Artificial neural network Mining engineering
下载PDF
Prediction Model of Wax Deposition Rate in Waxy Crude Oil Pipelines by Elman Neural Network Based on Improved Reptile Search Algorithm
6
作者 Zhuo Chen Ningning Wang +1 位作者 Wenbo Jin Dui Li 《Energy Engineering》 EI 2024年第4期1007-1026,共20页
A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax depositi... A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy. 展开更多
关键词 Waxy crude oil wax deposition rate chaotic map improved reptile search algorithm Elman neural network prediction accuracy
下载PDF
Cluster based hierarchical resource searching model in P2P network 被引量:1
7
作者 Yang Ruijuan Liu Jian Tian Jingwen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期188-194,共7页
For the problem of large network load generated by the Gnutella resource-searching model in Peer to Peer (P2P) network, a improved model to decrease the network expense is proposed, which establishes a duster in P2P... For the problem of large network load generated by the Gnutella resource-searching model in Peer to Peer (P2P) network, a improved model to decrease the network expense is proposed, which establishes a duster in P2P network, auto-organizes logical layers, and applies a hybrid mechanism of directional searching and flooding. The performance analysis and simulation results show that the proposed hierarchical searching model has availably reduced the generated message load and that its searching-response time performance is as fairly good as that of the Gnutella model. 展开更多
关键词 Communication and information system Resource-searching model in P2P network GNUTELLA CLUSTER Hierarchical network
下载PDF
Discussion on the Application of Complex Power Network to Software Engineering
8
作者 Jiayan SONG 《International Journal of Technology Management》 2015年第1期92-93,共2页
Along with the further development of science and technology, computer hardware and the Intemet are in a rapid development, and information technology has been widely used in all fields so that complex problems are si... Along with the further development of science and technology, computer hardware and the Intemet are in a rapid development, and information technology has been widely used in all fields so that complex problems are simply solved. Because of the needs for the development, software starts to mutually integrate with complex power network, making the scale of software increase greatly. Such a growing trend of software promotes soft-ware development to go beyond a general understanding and control and thus a complex system is formed. It is necessary to strengthen the research of complex network theory, and this is a new way to help people study the complexity of software systems. In this paper, the development course of complex dynamic network is introduced simply and the use of complex power network in the software engineering is summarized. Hopefully, this paper can help the crossover study of complex power network and software engineering in the future. 展开更多
关键词 Complex Power network Software engineering computer Application network Model
下载PDF
Energy-Efficient Routing Using Novel Optimization with Tabu Techniques for Wireless Sensor Network
9
作者 Manar Ahmed Hamza Aisha Hassan Abdalla Hashim +5 位作者 Dalia H.Elkamchouchi Nadhem Nemri Jaber S.Alzahrani Amira Sayed A.Aziz Mnahel Ahmed Ibrahim Abdelwahed Motwakel 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1711-1726,共16页
Wireless Sensor Network(WSN)consists of a group of limited energy source sensors that are installed in a particular region to collect data from the environment.Designing the energy-efficient data collection methods in... Wireless Sensor Network(WSN)consists of a group of limited energy source sensors that are installed in a particular region to collect data from the environment.Designing the energy-efficient data collection methods in largescale wireless sensor networks is considered to be a difficult area in the research.Sensor node clustering is a popular approach for WSN.Moreover,the sensor nodes are grouped to form clusters in a cluster-based WSN environment.The battery performance of the sensor nodes is likewise constrained.As a result,the energy efficiency of WSNs is critical.In specific,the energy usage is influenced by the loads on the sensor node as well as it ranges from the Base Station(BS).Therefore,energy efficiency and load balancing are very essential in WSN.In the proposed method,a novel Grey Wolf Improved Particle Swarm Optimization with Tabu Search Techniques(GW-IPSO-TS)was used.The selection of Cluster Heads(CHs)and routing path of every CH from the base station is enhanced by the proposed method.It provides the best routing path and increases the lifetime and energy efficiency of the network.End-to-end delay and packet loss rate have also been improved.The proposed GW-IPSO-TS method enhances the evaluation of alive nodes,dead nodes,network survival index,convergence rate,and standard deviation of sensor nodes.Compared to the existing algorithms,the proposed method outperforms better and improves the lifetime of the network. 展开更多
关键词 Wireless sensor networks ENERGY-EFFICIENT load balancing energy consumption network’s lifetime cluster heads grey wolf optimization tabu search particle swarm optimization
下载PDF
STUDY ON INJECTION AND IGNITION CONTROL OF GASOLINE ENGINE BASED ON BP NEURAL NETWORK 被引量:13
10
作者 Zhang Cuiping Yang QingfoCollege of Mechanical Engineering,Taiyuan University of Technology,Taiyuan 030024, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第4期441-444,共4页
According to advantages of neural network and characteristics of operatingprocedures of engine, a new strategy is represented on the control of fuel injection and ignitiontiming of gasoline engine based on improved BP... According to advantages of neural network and characteristics of operatingprocedures of engine, a new strategy is represented on the control of fuel injection and ignitiontiming of gasoline engine based on improved BP network algorithm. The optimum ignition advance angleand fuel injection pulse band of engine under different speed and load are tested for the samplestraining network, focusing on the study of the design method and procedure of BP neural network inengine injection and ignition control. The results show that artificial neural network technique canmeet the requirement of engine injection and ignition control. The method is feasible for improvingpower performance, economy and emission performances of gasoline engine. 展开更多
关键词 Neural network BP algorithm Gasoline engine CONTROL
下载PDF
Sensor Fault Diagnosis and Reconstruction of Engine Control System Based on Autoassociative Neural Network 被引量:7
11
作者 黄向华 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2004年第1期23-27,共5页
The topology and property of Autoassociative Neural Networks(AANN) and theAANN's application to sensor fault diagnosis and reconstruction of engine control system arestudied. The key feature of AANN is feature ext... The topology and property of Autoassociative Neural Networks(AANN) and theAANN's application to sensor fault diagnosis and reconstruction of engine control system arestudied. The key feature of AANN is feature extract and noise filtering. Sensor fault detection isaccomplished by integrating the optimal estimation and fault detection logic. Digital simulationshows that the scheme can detect hard and soft failures of sensors at the absence of models forengines which have performance deteriorate in the service life, and can provide good analyticalredundancy. 展开更多
关键词 autoassociative neural network engine sensor fault diagnosis analyticalredundancy
下载PDF
Combining artificial neural network and multi-objective optimization to reduce a heavy-duty diesel engine emissions and fuel consumption 被引量:3
12
作者 Amir-Hasan Kakaee Pourya Rahnama +1 位作者 Amin Paykani Behrooz Mashadi 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第11期4235-4245,共11页
Nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) is well known for engine optimization problem. Artificial neural networks(ANNs) followed by multi-objective optimization including a NSGA-Ⅱ and strength pareto evolu... Nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) is well known for engine optimization problem. Artificial neural networks(ANNs) followed by multi-objective optimization including a NSGA-Ⅱ and strength pareto evolutionary algorithm(SPEA2) were used to optimize the operating parameters of a compression ignition(CI) heavy-duty diesel engine. First, a multi-layer perception(MLP) network was used for the ANN modeling and the back propagation algorithm was utilized as training algorithm. Then, two different multi-objective evolutionary algorithms were implemented to determine the optimal engine parameters. The objective of the present study is to decide which algorithm is preferable in terms of performance in engine emission and fuel consumption optimization problem. 展开更多
关键词 engine fuel CONSUMPTION emissions NEURAL networks
下载PDF
Fault Diagnosis for Manifold Absolute Pressure Sensor(MAP) of Diesel Engine Based on Elman Neural Network Observer 被引量:17
13
作者 WANG Yingmin ZHANG Fujun +1 位作者 CUI Tao ZHOU Jinlong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第2期386-395,共10页
Intake system of diesel engine is a strong nonlinear system, and it is difficult to establish accurate model of intake system; and bias fault and precision degradation fault of MAP of diesel engine can't be diagnosed... Intake system of diesel engine is a strong nonlinear system, and it is difficult to establish accurate model of intake system; and bias fault and precision degradation fault of MAP of diesel engine can't be diagnosed easily using model-based methods. Thus, a fault diagnosis method based on Elman neural network observer is proposed. By comparing simulation results of intake pressure based on BP network and Elman neural network, lower sampling error magnitude is gained using Elman neural network, and the error is less volatile. Forecast accuracy is between 0.015?0.017 5 and sample error is controlled within 0?0.07. Considering the output stability and complexity of solving comprehensively, Elman neural network with a single hidden layer and with 44 nodes is presented as intake system observer. By comparing the relations of confidence intervals of the residual value between the measured and predicted values, error variance and failures in various fault types. Then four typical MAP faults of diesel engine can be diagnosed: complete failure fault, bias fault, precision degradation fault and drift fault. The simulation results show: intake pressure is observable and selection of diagnostic strategy parameter reasonably can increase the accuracy of diagnosis;the proposed fault diagnosis method only depends on data and structural parameters of observer, not depends on the nonlinear model of air intake system. A fault diagnosis method is proposed not depending system model to observe intake pressure, and bias fault and precision degradation fault of MAP of diesel engine can be diagnosed based on residuals. 展开更多
关键词 neural network diesel engine intake system fault diagnosis threshold value
下载PDF
Artificial neural network-based merging score for Meta search engine 被引量:2
14
作者 P.Vijaya G.Raju Santosh Kumar Ray 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2604-2615,共12页
Several users use metasearch engines directly or indirectly to access and gather data from more than one data sources. The effectiveness of a metasearch engine is majorly determined by the quality of the results and i... Several users use metasearch engines directly or indirectly to access and gather data from more than one data sources. The effectiveness of a metasearch engine is majorly determined by the quality of the results and it returns and in response to user queries. The rank aggregation methods which have been proposed until now exploits very limited set of parameters such as total number of used resources and the rankings they achieved from each individual resource. In this work, we use the neural network to merge the score computation module effectively. Initially, we give a query to different search engines and the top n list from each search engine is chosen for further processing our technique. We then merge the top n list based on unique links and we do some parameter calculations such as title based calculation, snippet based calculation, content based calculation, domain calculation, position calculation and co-occurrence calculation. We give the solutions of the calculations with user given ranking of links to the neural network to train the system. The system then rank and merge the links we obtain from different search engines for the query we give. Experimentation results reports a retrieval effectiveness of about 80%, precision of about 79% for user queries and about 72% for benchmark queries. The proposed technique also includes a response time of about 76 ms for 50 links and 144 ms for 100 links. 展开更多
关键词 metasearch engine neural network retrieval of documents ranking list
下载PDF
Study of CNG/diesel dual fuel engine's emissions by means of RBF neural network 被引量:5
15
作者 刘震涛 费少梅 《Journal of Zhejiang University Science》 CSCD 2004年第8期960-965,共6页
Great efforts have been made to resolve the serious environmental pollution and inevitable declining of energy resources. A review of Chinese fuel reserves and engine technology showed that compressed natural gas (CN... Great efforts have been made to resolve the serious environmental pollution and inevitable declining of energy resources. A review of Chinese fuel reserves and engine technology showed that compressed natural gas (CNG)/diesel dual fuel engine (DFE) was one of the best solutions for the above problems at present. In order to study and improve the emission performance of CNG/diesel DFE, an emission model for DFE based on radial basis function (RBF) neural network was developed which was a black-box input-output training data model not require priori knowledge. The RBF centers and the connected weights could be selected automatically according to the distribution of the training data in input-output space and the given approximating error. Studies showed that the predicted results accorded well with the experimental data over a large range of operating conditions from low load to high load. The developed emissions model based on the RBF neural network could be used to successfully predict and optimize the emissions performance of DFE. And the effect of the DFE main performance parameters, such as rotation speed, load, pilot quantity and injection timing, were also predicted by means of this model. In resumé, an emission prediction model for CNG/diesel DFE based on RBF neural network was built for analyzing the effect of the main performance parameters on the CO, NOx emissions of DFE. The predicted results agreed quite well with the traditional emissions model, which indicated that the model had certain application value, although it still has some limitations, because of its high dependence on the quantity of the experimental sample data. 展开更多
关键词 Dual fuel engine Emission performance RBF neural network
下载PDF
Routing Protocol Based on Grover’s Searching Algorithm for Mobile Ad-hoc Networks 被引量:3
16
作者 孟利民 宋文波 《China Communications》 SCIE CSCD 2013年第3期145-156,共12页
In Mobile Ad-hoc Networks (MANETs), routing protocols directly affect various indices of network Quality of Service (QoS), so they play an important role in network performance. To address the drawbacks associated wit... In Mobile Ad-hoc Networks (MANETs), routing protocols directly affect various indices of network Quality of Service (QoS), so they play an important role in network performance. To address the drawbacks associated with traditional routing protocols in MANETs, such as poor anti-fading performance and slow convergence rate, for basic Dynamic Source Routing (DSR), we propose a new routing model based on Grover's searching algorithm. With this new routing model, each node maintains a node vector function, and all the nodes can obtain a node probability vector using Grover's algorithm, and then select an optimal routing according to node probability. Simulation results show that compared with DSR, this new routing protocol can effectively extend the network lifetime, as well as reduce the network delay and the number of routing hops. It can also significantly improve the anti-jamming capability of the network. 展开更多
关键词 Grover's channel fading additive bit error rate searching algorithm noise network delay
下载PDF
Intelligent prediction on air intake flow of spark ignition engine by a chaos radial basis function neural network 被引量:1
17
作者 LI Yue-lin LIU Bo-fu +3 位作者 WU Gang LIU Zhi-qiang DING Jing-feng ABUBAKAR Shitu 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第9期2687-2695,共9页
To ensure the control of the precision of air-fuel ratio(AFR)of port fuel injection(PFI)spark ignition(SI)engines,a chaos radial basis function(RBF)neural network is used to predict the air intake flow of the engine.T... To ensure the control of the precision of air-fuel ratio(AFR)of port fuel injection(PFI)spark ignition(SI)engines,a chaos radial basis function(RBF)neural network is used to predict the air intake flow of the engine.The data of air intake flow is proved to be multidimensionally nonlinear and chaotic.The RBF neural network is used to train the reconstructed phase space of the data.The chaos algorithm is employed to optimize the weights of output layer connection and the radial basis center of Gaussian function in hidden layer.The simulation results obtained from Matlab/Simulink illustrate that the model has higher accuracy compared to the conventional RBF model.The mean absolute error and the mean relative error of the chaos RBF model can reach 0.0017 and 0.48,respectively. 展开更多
关键词 intake air flow spark ignition engine CHAOS RBF neural network
下载PDF
Application of neural network in the study of combustion rate of natural gas/diesel dual fuel engine 被引量:1
18
作者 严兆大 周重光 +2 位作者 苏石川 刘震涛 王希珍 《Journal of Zhejiang University Science》 EI CSCD 2003年第2期170-174,共5页
In order to predict and improve the performance of natural gas/diesel dual fuel engine (DFE), a combustion rate model based on forward neural network was built to study the combustion process of the DFE. The effect ... In order to predict and improve the performance of natural gas/diesel dual fuel engine (DFE), a combustion rate model based on forward neural network was built to study the combustion process of the DFE. The effect of the operatin g parameters on combustion rate was also studied by means of this model. The stu dy showed that the predicted results were good agreement with the experimental d a ta. It was proved that the developed combustion rate model could be used to succ essfully predict and optimize the combustion process of dual fuel engine. 展开更多
关键词 Dual fuel engine Forward neural network Rate of combu stion
下载PDF
Ensemble Recurrent Neural Network-Based Residual Useful Life Prognostics of Aircraft Engines 被引量:1
19
作者 Jun Wu Kui Hu +3 位作者 Yiwei Cheng Ji Wang Chao Deng Yuanhan Wang 《Structural Durability & Health Monitoring》 EI 2019年第3期317-329,共13页
Residual useful life(RUL)prediction is a key issue for improving efficiency of aircraft engines and reducing their maintenance cost.Owing to various failure mechanism and operating environment,the application of class... Residual useful life(RUL)prediction is a key issue for improving efficiency of aircraft engines and reducing their maintenance cost.Owing to various failure mechanism and operating environment,the application of classical models in RUL prediction of aircraft engines is fairly difficult.In this study,a novel RUL prognostics method based on using ensemble recurrent neural network to process massive sensor data is proposed.First of all,sensor data obtained from the aircraft engines are preprocessed to eliminate singular values,reduce random fluctuation and preserve degradation trend of the raw sensor data.Secondly,three kinds of recurrent neural networks(RNN),including ordinary RNN,long shortterm memory(LSTM),and gated recurrent unit(GRU),are individually constructed.Thirdly,ensemble learning mechanism is designed to merge the above RNNs for producing a more accurate RUL prediction.The effectiveness of the proposed method is validated using two characteristically different turbofan engine datasets.Experimental results show a competitive performance of the proposed method in comparison with typical methods reported in literatures. 展开更多
关键词 Aircraft engines residual useful life prediction health monitoring neural networks ensemble learning
下载PDF
A Neural Network Approach on Reverse Engineering Surface Reasoning in the Manufacturing Field 被引量:1
20
作者 邢渊 《High Technology Letters》 EI CAS 2001年第3期49-54,共6页
This paper applied the neural network technology to surface reasoning in reverse engineering and established the neural network computation model. One of the main advantages of reasoning solid surface using neural net... This paper applied the neural network technology to surface reasoning in reverse engineering and established the neural network computation model. One of the main advantages of reasoning solid surface using neural network is that no knowledge about surface is needed, and the limited measured points on the surface will do sufficiently. This paper listed the related reasoning cases, including the elementary analytical surfaces and freeform surfaces, discussed the various issues occurring during reasoning process and proved the feasibility and efficiency of this approach from theory and practical computing cases. The results show that a neural network is an excellent aided analysis means for surface reasoning in reversing engineering and possesses practical use for the surface that is complex, incomplete and partially worn out or damaged. 展开更多
关键词 Neural networks Surface reasoning Reverse engineering
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部