A complete study for the implementation of wireless sensor networks in the intelligent building is presented. We carry out some experiments to find out the factors affecting the network performance. Several vital para...A complete study for the implementation of wireless sensor networks in the intelligent building is presented. We carry out some experiments to find out the factors affecting the network performance. Several vital parameters which are related to the link quality are measured before deploying the actual system. And then, we propose an optimized routing protocol based on the analysis of the test data. We evaluate the deployment strategies to ensure the excellent performance of the wireless sensor networks under the real working conditions. And the evaluation results show that the presented system could satisfy the requirements of the applications in the intelligent building.展开更多
The field of healthcare is considered to be the most promising application of intelligent sensor networks.However,the security and privacy protection ofmedical images collected by intelligent sensor networks is a hot ...The field of healthcare is considered to be the most promising application of intelligent sensor networks.However,the security and privacy protection ofmedical images collected by intelligent sensor networks is a hot problem that has attracted more and more attention.Fortunately,digital watermarking provides an effective method to solve this problem.In order to improve the robustness of the medical image watermarking scheme,in this paper,we propose a novel zero-watermarking algorithm with the integer wavelet transform(IWT),Schur decomposition and image block energy.Specifically,we first use IWT to extract low-frequency information and divide them into non-overlapping blocks,then we decompose the sub-blocks by Schur decomposition.After that,the feature matrix is constructed according to the relationship between the image block energy and the whole image energy.At the same time,we encrypt watermarking with the logistic chaotic position scrambling.Finally,the zero-watermarking is obtained by XOR operation with the encrypted watermarking.Three indexes of peak signal-to-noise ratio,normalization coefficient(NC)and the bit error rate(BER)are used to evaluate the robustness of the algorithm.According to the experimental results,most of the NC values are around 0.9 under various attacks,while the BER values are very close to 0.These experimental results show that the proposed algorithm is more robust than the existing zero-watermarking methods,which indicates it is more suitable for medical image privacy and security protection.展开更多
There is great significance to diagnose the fault of an intelligent building facility for fault controlling, repairing, eliminating and preventing. As an example, this paper established a Bayesian networks model f or ...There is great significance to diagnose the fault of an intelligent building facility for fault controlling, repairing, eliminating and preventing. As an example, this paper established a Bayesian networks model f or fault diagnosis of the refrigeration system of an intelligent building facility, gave the networks parameters, and analyzed the reasoning mechanism. Based on the model, some data was analyzed and diagnosed by adopting Bayesian networks reasoning platform GeNIe. The result shows that the diagnosis effect is more comprehensive and reasonable than the other method.展开更多
BACKGROUND Artificial intelligence,such as convolutional neural networks(CNNs),has been used in the interpretation of images and the diagnosis of hepatocellular cancer(HCC)and liver masses.CNN,a machine-learning algor...BACKGROUND Artificial intelligence,such as convolutional neural networks(CNNs),has been used in the interpretation of images and the diagnosis of hepatocellular cancer(HCC)and liver masses.CNN,a machine-learning algorithm similar to deep learning,has demonstrated its capability to recognise specific features that can detect pathological lesions.AIM To assess the use of CNNs in examining HCC and liver masses images in the diagnosis of cancer and evaluating the accuracy level of CNNs and their performance.METHODS The databases PubMed,EMBASE,and the Web of Science and research books were systematically searched using related keywords.Studies analysing pathological anatomy,cellular,and radiological images on HCC or liver masses using CNNs were identified according to the study protocol to detect cancer,differentiating cancer from other lesions,or staging the lesion.The data were extracted as per a predefined extraction.The accuracy level and performance of the CNNs in detecting cancer or early stages of cancer were analysed.The primary outcomes of the study were analysing the type of cancer or liver mass and identifying the type of images that showed optimum accuracy in cancer detection.RESULTS A total of 11 studies that met the selection criteria and were consistent with the aims of the study were identified.The studies demonstrated the ability to differentiate liver masses or differentiate HCC from other lesions(n=6),HCC from cirrhosis or development of new tumours(n=3),and HCC nuclei grading or segmentation(n=2).The CNNs showed satisfactory levels of accuracy.The studies aimed at detecting lesions(n=4),classification(n=5),and segmentation(n=2).Several methods were used to assess the accuracy of CNN models used.CONCLUSION The role of CNNs in analysing images and as tools in early detection of HCC or liver masses has been demonstrated in these studies.While a few limitations have been identified in these studies,overall there was an optimal level of accuracy of the CNNs used in segmentation and classification of liver cancers images.展开更多
Eye health has become a global health concern and attracted broad attention.Over the years,researchers have proposed many state-of-the-art convolutional neural networks(CNNs)to assist ophthalmologists in diagnosing oc...Eye health has become a global health concern and attracted broad attention.Over the years,researchers have proposed many state-of-the-art convolutional neural networks(CNNs)to assist ophthalmologists in diagnosing ocular diseases efficiently and precisely.However,most existing methods were dedicated to constructing sophisticated CNNs,inevitably ignoring the trade-off between performance and model complexity.To alleviate this paradox,this paper proposes a lightweight yet efficient network architecture,mixeddecomposed convolutional network(MDNet),to recognise ocular diseases.In MDNet,we introduce a novel mixed-decomposed depthwise convolution method,which takes advantage of depthwise convolution and depthwise dilated convolution operations to capture low-resolution and high-resolution patterns by using fewer computations and fewer parameters.We conduct extensive experiments on the clinical anterior segment optical coherence tomography(AS-OCT),LAG,University of California San Diego,and CIFAR-100 datasets.The results show our MDNet achieves a better trade-off between the performance and model complexity than efficient CNNs including MobileNets and MixNets.Specifically,our MDNet outperforms MobileNets by 2.5%of accuracy by using 22%fewer parameters and 30%fewer computations on the AS-OCT dataset.展开更多
The hepatitis B virus is the most deadly virus,which significantly affects the human liver.The termination of the hepatitis B virus is mandatory and can be done by taking precautions as well as a suitable cure in its ...The hepatitis B virus is the most deadly virus,which significantly affects the human liver.The termination of the hepatitis B virus is mandatory and can be done by taking precautions as well as a suitable cure in its introductory stage;otherwise,it will become a severe problem and make a human liver suffer from the most dangerous diseases,such as liver cancer.In this paper,two medical diagnostic systems are developed for the diagnosis of this life-threatening virus.The methodologies used to develop thesemodels are fuzzy logic and the neuro-fuzzy technique.The diverse parameters that assist in the evaluation of performance are also determined by using the observed values from the proposed system for both developedmodels.The classification accuracy of a multilayered fuzzy inference system is 94%.The accuracy with which the developed medical diagnostic system by using Adaptive Network based Fuzzy Interference System(ANFIS)classifies the result corresponding to the given input is 95.55%.The comparison of both developed models on the basis of their performance parameters has been made.It is observed that the neuro-fuzzy technique-based diagnostic system has better accuracy in classifying the infected and non-infected patients as compared to the fuzzy diagnostic system.Furthermore,the performance evaluation concluded that the outcome given by the developed medical diagnostic system by using ANFIS is accurate and correct as compared to the developed fuzzy inference system and also can be used in hospitals for the diagnosis of Hepatitis B disease.In other words,the adaptive neuro-fuzzy inference system has more capability to classify the provided inputs adequately than the fuzzy inference system.展开更多
In most countries,buildings are responsible for significant energy consumption where space heating and air conditioning is responsible for the majority of this energy use.To reduce this massive consumption and decreas...In most countries,buildings are responsible for significant energy consumption where space heating and air conditioning is responsible for the majority of this energy use.To reduce this massive consumption and decrease carbon emission,thermal insulation of buildings can play an important role.The estimation of energy savings following the improvement of a building’s insulation remains a key area of research in order to calculate the cost savings and the payback period.In this paper,a case study has been presented where deep retrofitting has been introduced to an existing building to bring it closer to a Passivhaus standard with the introduction of insulation and solar photovoltaic panels.The thermal performance of the building with its improved insulation has been evaluated using infrared thermography.Artificial intelligence using deep learning neural networks is implemented to predict the thermal performance of the building and the expected energy savings.The prediction of neural networks is compared with the actual savings calculated using historical weather data.The results of the neural network show high accuracy of predicting the actual energy savings with success rate of about 82%when compared with the calculated values.The results show that this suggested approach can be used to rapidly predict energy savings from retrofitting of buildings with reasonable accuracy,hence providing a practical rapid tool for the building industry and communities to estimate energy savings.A mathematical model has been also developed which has indicated a life-long monitoring will be needed to precisely estimate the benefits of energy savings in retrofitting due to the change in weather conditions and people’s behaviour.展开更多
Objective: The objective of this study was to explore the medication rules and academic ideas of Professor Wang Yu-Ying in the treatment of climacteric syndrome(CLS) and to predict new prescriptions. Materials and Met...Objective: The objective of this study was to explore the medication rules and academic ideas of Professor Wang Yu-Ying in the treatment of climacteric syndrome(CLS) and to predict new prescriptions. Materials and Methods: The characteristics of frequency, clustering, four properties, and five flavors were analyzed, and new prescriptions were predicted through an artificial intelligence(AI)-based method. The potential pathways of new prescriptions were explored through network pharmacology-based analysis. Results: The top 16 medicinals used by Professor Wang Yu-Ying in the treatment of CLS included Danggui, Longgu, Muli, Fuling, Chuanxiong, Gancao, Xiangfu, and Tusizi. The AI method was applied to predict the basic prescription for treating CLS: Danggui 15 g, Duanlonggu 30 g, Duanmuli 30 g, Fuling 28 g, Chuanxiong 10 g, Gancao 6 g, Xiangfu 12 g, Tusizi 14 g, etc., Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses showed that the pathogenesis of CLS might be related to the estrogen pathway, involving typical steroid responses. Conclusions: This study summarized Professor Wang's medication experience in the treatment of CLS based on the data mining of clinical diagnoses and treatment cases. The AI method was used to predict the new prescription of CLS treatment, which was found to be reasonable by network pharmacology studies on its multi-target and multi-pathway mechanisms.展开更多
Our living environments are being gradually occupied with an abundant number of digital objects that have networking and computing capabilities. After these devices are plugged into a network, they initially advertise...Our living environments are being gradually occupied with an abundant number of digital objects that have networking and computing capabilities. After these devices are plugged into a network, they initially advertise their presence and capabilities in the form of services so that they can be discovered and, if desired, exploited by the user or other networked devices. With the increasing number of these devices attached to the network, the complexity to configure and control them increases, which may lead to major processing and communication overhead. Hence, the devices are no longer expected to just act as primitive stand-alone appliances that only provide the facilities and services to the user they are designed for, but also offer complex services that emerge from unique combinations of devices. This creates the necessity for these devices to be equipped with some sort of intelligence and self-awareness to enable them to be self-configuring and self-programming. However, with this "smart evolution", the cognitive load to configure and control such spaces becomes immense. One way to relieve this load is by employing artificial intelligence (AI) techniques to create an intelligent "presence" where the system will be able to recognize the users and autonomously program the environment to be energy efficient and responsive to the user's needs and behaviours. These AI mechanisms should be embedded in the user's environments and should operate in a non-intrusive manner. This paper will show how computational intelligence (CI), which is an emerging domain of AI, could be employed and embedded in our living spaces to help such environments to be more energy efficient, intelligent, adaptive and convenient to the users.展开更多
Artificial intelligence plays an essential role in the medical and health industries.Deep convolution networks offer valuable services and help create automated systems to perform medical image analysis.However,convol...Artificial intelligence plays an essential role in the medical and health industries.Deep convolution networks offer valuable services and help create automated systems to perform medical image analysis.However,convolution networks examine medical images effectively;such systems require high computational complexity when recognizing the same disease-affected region.Therefore,an optimized deep convolution network is utilized for analyzing disease-affected regions in this work.Different disease-relatedmedical images are selected and examined pixel by pixel;this analysis uses the gray wolf optimized deep learning network.This method identifies affected pixels by the gray wolf hunting process.The convolution network uses an automatic learning function that predicts the disease affected by previous imaging analysis.The optimized algorithm-based selected regions are further examined using the distribution pattern-matching rule.The pattern-matching process recognizes the disease effectively,and the system’s efficiency is evaluated using theMATLAB implementation process.This process ensures high accuracy of up to 99.02%to 99.37%and reduces computational complexity.展开更多
The Internet of Medical Things (IoMT) emerges with the visionof the Wireless Body Sensor Network (WBSN) to improve the health monitoringsystems and has an enormous impact on the healthcare system forrecognizing the le...The Internet of Medical Things (IoMT) emerges with the visionof the Wireless Body Sensor Network (WBSN) to improve the health monitoringsystems and has an enormous impact on the healthcare system forrecognizing the levels of risk/severity factors (premature diagnosis, treatment,and supervision of chronic disease i.e., cancer) via wearable/electronic healthsensor i.e., wireless endoscopic capsule. However, AI-assisted endoscopy playsa very significant role in the detection of gastric cancer. Convolutional NeuralNetwork (CNN) has been widely used to diagnose gastric cancer based onvarious feature extraction models, consequently, limiting the identificationand categorization performance in terms of cancerous stages and gradesassociated with each type of gastric cancer. This paper proposed an optimizedAI-based approach to diagnose and assess the risk factor of gastric cancerbased on its type, stage, and grade in the endoscopic images for smarthealthcare applications. The proposed method is categorized into five phasessuch as image pre-processing, Four-Dimensional (4D) image conversion,image segmentation, K-Nearest Neighbour (K-NN) classification, and multigradingand staging of image intensities. Moreover, the performance of theproposed method has experimented on two different datasets consisting ofcolor and black and white endoscopic images. The simulation results verifiedthat the proposed approach is capable of perceiving gastric cancer with 88.09%sensitivity, 95.77% specificity, and 96.55% overall accuracy respectively.展开更多
In the quest to minimize energy waste,the energy performance of buildings(EPB)has been a focus because building appliances,such as heating,ventilation,and air conditioning,consume the highest energy.Therefore,effectiv...In the quest to minimize energy waste,the energy performance of buildings(EPB)has been a focus because building appliances,such as heating,ventilation,and air conditioning,consume the highest energy.Therefore,effective design and planning for estimating heating load(HL)and cooling load(CL)for energy saving have become paramount.In this vein,efforts have been made to predict the HL and CL using a univariate approach.However,this approach necessitates two models for learning HL and CL,requiring more computational time.Moreover,the one-dimensional(1D)convolutional neural network(CNN)has gained popularity due to its nominal computa-tional complexity,high performance,and low-cost hardware requirement.In this paper,we formulate the prediction as a multivariate regression problem in which the HL and CL are simultaneously predicted using the 1D CNN.Considering the building shape characteristics,one kernel size is adopted to create the receptive fields of the 1D CNN to extract the feature maps,a dense layer to interpret the maps,and an output layer with two neurons to predict the two real-valued responses,HL and CL.As the 1D data are not affected by excessive parameters,the pooling layer is not applied in this implementation.Besides,the use of pooling has been questioned by recent studies.The performance of the proposed model displays a comparative advantage over existing models in terms of the mean squared error(MSE).Thus,the proposed model is effective for EPB prediction because it reduces computational time and significantly lowers the MSE.展开更多
基金supported by National Natural Science Foundation of China under Grant No.60802016, 60972010by China Next Generation Internet (CNGI) project under Grant No.CNGI-09-03-05
文摘A complete study for the implementation of wireless sensor networks in the intelligent building is presented. We carry out some experiments to find out the factors affecting the network performance. Several vital parameters which are related to the link quality are measured before deploying the actual system. And then, we propose an optimized routing protocol based on the analysis of the test data. We evaluate the deployment strategies to ensure the excellent performance of the wireless sensor networks under the real working conditions. And the evaluation results show that the presented system could satisfy the requirements of the applications in the intelligent building.
基金supported in part by the Hainan Provincial Natural Science Foundation of China (No.620MS067)the Intelligent Medical Project of Chongqing Medical University (ZHYXQNRC202101)the Student Scientific Research and Innovation Experiment Project of the Medical Information College of Chongqing Medical University (No.2020C006).
文摘The field of healthcare is considered to be the most promising application of intelligent sensor networks.However,the security and privacy protection ofmedical images collected by intelligent sensor networks is a hot problem that has attracted more and more attention.Fortunately,digital watermarking provides an effective method to solve this problem.In order to improve the robustness of the medical image watermarking scheme,in this paper,we propose a novel zero-watermarking algorithm with the integer wavelet transform(IWT),Schur decomposition and image block energy.Specifically,we first use IWT to extract low-frequency information and divide them into non-overlapping blocks,then we decompose the sub-blocks by Schur decomposition.After that,the feature matrix is constructed according to the relationship between the image block energy and the whole image energy.At the same time,we encrypt watermarking with the logistic chaotic position scrambling.Finally,the zero-watermarking is obtained by XOR operation with the encrypted watermarking.Three indexes of peak signal-to-noise ratio,normalization coefficient(NC)and the bit error rate(BER)are used to evaluate the robustness of the algorithm.According to the experimental results,most of the NC values are around 0.9 under various attacks,while the BER values are very close to 0.These experimental results show that the proposed algorithm is more robust than the existing zero-watermarking methods,which indicates it is more suitable for medical image privacy and security protection.
基金This paper is supported by National Natural Science Foundation of China under Grant No.10372084
文摘There is great significance to diagnose the fault of an intelligent building facility for fault controlling, repairing, eliminating and preventing. As an example, this paper established a Bayesian networks model f or fault diagnosis of the refrigeration system of an intelligent building facility, gave the networks parameters, and analyzed the reasoning mechanism. Based on the model, some data was analyzed and diagnosed by adopting Bayesian networks reasoning platform GeNIe. The result shows that the diagnosis effect is more comprehensive and reasonable than the other method.
基金Supported by the College of Medicine Research Centre,Deanship of Scientific Research,King Saud University,Riyadh,Saudi Arabia
文摘BACKGROUND Artificial intelligence,such as convolutional neural networks(CNNs),has been used in the interpretation of images and the diagnosis of hepatocellular cancer(HCC)and liver masses.CNN,a machine-learning algorithm similar to deep learning,has demonstrated its capability to recognise specific features that can detect pathological lesions.AIM To assess the use of CNNs in examining HCC and liver masses images in the diagnosis of cancer and evaluating the accuracy level of CNNs and their performance.METHODS The databases PubMed,EMBASE,and the Web of Science and research books were systematically searched using related keywords.Studies analysing pathological anatomy,cellular,and radiological images on HCC or liver masses using CNNs were identified according to the study protocol to detect cancer,differentiating cancer from other lesions,or staging the lesion.The data were extracted as per a predefined extraction.The accuracy level and performance of the CNNs in detecting cancer or early stages of cancer were analysed.The primary outcomes of the study were analysing the type of cancer or liver mass and identifying the type of images that showed optimum accuracy in cancer detection.RESULTS A total of 11 studies that met the selection criteria and were consistent with the aims of the study were identified.The studies demonstrated the ability to differentiate liver masses or differentiate HCC from other lesions(n=6),HCC from cirrhosis or development of new tumours(n=3),and HCC nuclei grading or segmentation(n=2).The CNNs showed satisfactory levels of accuracy.The studies aimed at detecting lesions(n=4),classification(n=5),and segmentation(n=2).Several methods were used to assess the accuracy of CNN models used.CONCLUSION The role of CNNs in analysing images and as tools in early detection of HCC or liver masses has been demonstrated in these studies.While a few limitations have been identified in these studies,overall there was an optimal level of accuracy of the CNNs used in segmentation and classification of liver cancers images.
基金Stable Support Plan Program,Grant/Award Number:20200925174052004Shenzhen Natural Science Fund,Grant/Award Number:JCYJ20200109140820699+2 种基金National Natural Science Foundation of China,Grant/Award Number:82272086Guangdong Provincial Department of Education,Grant/Award Numbers:2020ZDZX3043,SJZLGC202202Guangdong Provincial Key Laboratory,Grant/Award Number:2020B121201001。
文摘Eye health has become a global health concern and attracted broad attention.Over the years,researchers have proposed many state-of-the-art convolutional neural networks(CNNs)to assist ophthalmologists in diagnosing ocular diseases efficiently and precisely.However,most existing methods were dedicated to constructing sophisticated CNNs,inevitably ignoring the trade-off between performance and model complexity.To alleviate this paradox,this paper proposes a lightweight yet efficient network architecture,mixeddecomposed convolutional network(MDNet),to recognise ocular diseases.In MDNet,we introduce a novel mixed-decomposed depthwise convolution method,which takes advantage of depthwise convolution and depthwise dilated convolution operations to capture low-resolution and high-resolution patterns by using fewer computations and fewer parameters.We conduct extensive experiments on the clinical anterior segment optical coherence tomography(AS-OCT),LAG,University of California San Diego,and CIFAR-100 datasets.The results show our MDNet achieves a better trade-off between the performance and model complexity than efficient CNNs including MobileNets and MixNets.Specifically,our MDNet outperforms MobileNets by 2.5%of accuracy by using 22%fewer parameters and 30%fewer computations on the AS-OCT dataset.
基金This research has been funded by Direccion General de Investigaciones of Universidad Santiago de Cali under call No.01-2021。
文摘The hepatitis B virus is the most deadly virus,which significantly affects the human liver.The termination of the hepatitis B virus is mandatory and can be done by taking precautions as well as a suitable cure in its introductory stage;otherwise,it will become a severe problem and make a human liver suffer from the most dangerous diseases,such as liver cancer.In this paper,two medical diagnostic systems are developed for the diagnosis of this life-threatening virus.The methodologies used to develop thesemodels are fuzzy logic and the neuro-fuzzy technique.The diverse parameters that assist in the evaluation of performance are also determined by using the observed values from the proposed system for both developedmodels.The classification accuracy of a multilayered fuzzy inference system is 94%.The accuracy with which the developed medical diagnostic system by using Adaptive Network based Fuzzy Interference System(ANFIS)classifies the result corresponding to the given input is 95.55%.The comparison of both developed models on the basis of their performance parameters has been made.It is observed that the neuro-fuzzy technique-based diagnostic system has better accuracy in classifying the infected and non-infected patients as compared to the fuzzy diagnostic system.Furthermore,the performance evaluation concluded that the outcome given by the developed medical diagnostic system by using ANFIS is accurate and correct as compared to the developed fuzzy inference system and also can be used in hospitals for the diagnosis of Hepatitis B disease.In other words,the adaptive neuro-fuzzy inference system has more capability to classify the provided inputs adequately than the fuzzy inference system.
文摘In most countries,buildings are responsible for significant energy consumption where space heating and air conditioning is responsible for the majority of this energy use.To reduce this massive consumption and decrease carbon emission,thermal insulation of buildings can play an important role.The estimation of energy savings following the improvement of a building’s insulation remains a key area of research in order to calculate the cost savings and the payback period.In this paper,a case study has been presented where deep retrofitting has been introduced to an existing building to bring it closer to a Passivhaus standard with the introduction of insulation and solar photovoltaic panels.The thermal performance of the building with its improved insulation has been evaluated using infrared thermography.Artificial intelligence using deep learning neural networks is implemented to predict the thermal performance of the building and the expected energy savings.The prediction of neural networks is compared with the actual savings calculated using historical weather data.The results of the neural network show high accuracy of predicting the actual energy savings with success rate of about 82%when compared with the calculated values.The results show that this suggested approach can be used to rapidly predict energy savings from retrofitting of buildings with reasonable accuracy,hence providing a practical rapid tool for the building industry and communities to estimate energy savings.A mathematical model has been also developed which has indicated a life-long monitoring will be needed to precisely estimate the benefits of energy savings in retrofitting due to the change in weather conditions and people’s behaviour.
文摘Objective: The objective of this study was to explore the medication rules and academic ideas of Professor Wang Yu-Ying in the treatment of climacteric syndrome(CLS) and to predict new prescriptions. Materials and Methods: The characteristics of frequency, clustering, four properties, and five flavors were analyzed, and new prescriptions were predicted through an artificial intelligence(AI)-based method. The potential pathways of new prescriptions were explored through network pharmacology-based analysis. Results: The top 16 medicinals used by Professor Wang Yu-Ying in the treatment of CLS included Danggui, Longgu, Muli, Fuling, Chuanxiong, Gancao, Xiangfu, and Tusizi. The AI method was applied to predict the basic prescription for treating CLS: Danggui 15 g, Duanlonggu 30 g, Duanmuli 30 g, Fuling 28 g, Chuanxiong 10 g, Gancao 6 g, Xiangfu 12 g, Tusizi 14 g, etc., Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses showed that the pathogenesis of CLS might be related to the estrogen pathway, involving typical steroid responses. Conclusions: This study summarized Professor Wang's medication experience in the treatment of CLS based on the data mining of clinical diagnoses and treatment cases. The AI method was used to predict the new prescription of CLS treatment, which was found to be reasonable by network pharmacology studies on its multi-target and multi-pathway mechanisms.
文摘Our living environments are being gradually occupied with an abundant number of digital objects that have networking and computing capabilities. After these devices are plugged into a network, they initially advertise their presence and capabilities in the form of services so that they can be discovered and, if desired, exploited by the user or other networked devices. With the increasing number of these devices attached to the network, the complexity to configure and control them increases, which may lead to major processing and communication overhead. Hence, the devices are no longer expected to just act as primitive stand-alone appliances that only provide the facilities and services to the user they are designed for, but also offer complex services that emerge from unique combinations of devices. This creates the necessity for these devices to be equipped with some sort of intelligence and self-awareness to enable them to be self-configuring and self-programming. However, with this "smart evolution", the cognitive load to configure and control such spaces becomes immense. One way to relieve this load is by employing artificial intelligence (AI) techniques to create an intelligent "presence" where the system will be able to recognize the users and autonomously program the environment to be energy efficient and responsive to the user's needs and behaviours. These AI mechanisms should be embedded in the user's environments and should operate in a non-intrusive manner. This paper will show how computational intelligence (CI), which is an emerging domain of AI, could be employed and embedded in our living spaces to help such environments to be more energy efficient, intelligent, adaptive and convenient to the users.
文摘Artificial intelligence plays an essential role in the medical and health industries.Deep convolution networks offer valuable services and help create automated systems to perform medical image analysis.However,convolution networks examine medical images effectively;such systems require high computational complexity when recognizing the same disease-affected region.Therefore,an optimized deep convolution network is utilized for analyzing disease-affected regions in this work.Different disease-relatedmedical images are selected and examined pixel by pixel;this analysis uses the gray wolf optimized deep learning network.This method identifies affected pixels by the gray wolf hunting process.The convolution network uses an automatic learning function that predicts the disease affected by previous imaging analysis.The optimized algorithm-based selected regions are further examined using the distribution pattern-matching rule.The pattern-matching process recognizes the disease effectively,and the system’s efficiency is evaluated using theMATLAB implementation process.This process ensures high accuracy of up to 99.02%to 99.37%and reduces computational complexity.
基金the Universiti Teknologi Malaysia for funding this research work through the Project Number Q.J130000.2409.08G77.
文摘The Internet of Medical Things (IoMT) emerges with the visionof the Wireless Body Sensor Network (WBSN) to improve the health monitoringsystems and has an enormous impact on the healthcare system forrecognizing the levels of risk/severity factors (premature diagnosis, treatment,and supervision of chronic disease i.e., cancer) via wearable/electronic healthsensor i.e., wireless endoscopic capsule. However, AI-assisted endoscopy playsa very significant role in the detection of gastric cancer. Convolutional NeuralNetwork (CNN) has been widely used to diagnose gastric cancer based onvarious feature extraction models, consequently, limiting the identificationand categorization performance in terms of cancerous stages and gradesassociated with each type of gastric cancer. This paper proposed an optimizedAI-based approach to diagnose and assess the risk factor of gastric cancerbased on its type, stage, and grade in the endoscopic images for smarthealthcare applications. The proposed method is categorized into five phasessuch as image pre-processing, Four-Dimensional (4D) image conversion,image segmentation, K-Nearest Neighbour (K-NN) classification, and multigradingand staging of image intensities. Moreover, the performance of theproposed method has experimented on two different datasets consisting ofcolor and black and white endoscopic images. The simulation results verifiedthat the proposed approach is capable of perceiving gastric cancer with 88.09%sensitivity, 95.77% specificity, and 96.55% overall accuracy respectively.
基金supported in part by the Institute of Information and Communications Technology Planning and Evaluation(IITP)Grant by the Korean Government Ministry of Science and ICT(MSITArtificial Intelligence Innovation Hub)under Grant 2021-0-02068in part by the NationalResearch Foundation of Korea(NRF)Grant by theKorean Government(MSIT)under Grant NRF-2021R1I1A3060565.
文摘In the quest to minimize energy waste,the energy performance of buildings(EPB)has been a focus because building appliances,such as heating,ventilation,and air conditioning,consume the highest energy.Therefore,effective design and planning for estimating heating load(HL)and cooling load(CL)for energy saving have become paramount.In this vein,efforts have been made to predict the HL and CL using a univariate approach.However,this approach necessitates two models for learning HL and CL,requiring more computational time.Moreover,the one-dimensional(1D)convolutional neural network(CNN)has gained popularity due to its nominal computa-tional complexity,high performance,and low-cost hardware requirement.In this paper,we formulate the prediction as a multivariate regression problem in which the HL and CL are simultaneously predicted using the 1D CNN.Considering the building shape characteristics,one kernel size is adopted to create the receptive fields of the 1D CNN to extract the feature maps,a dense layer to interpret the maps,and an output layer with two neurons to predict the two real-valued responses,HL and CL.As the 1D data are not affected by excessive parameters,the pooling layer is not applied in this implementation.Besides,the use of pooling has been questioned by recent studies.The performance of the proposed model displays a comparative advantage over existing models in terms of the mean squared error(MSE).Thus,the proposed model is effective for EPB prediction because it reduces computational time and significantly lowers the MSE.