期刊文献+
共找到9,726篇文章
< 1 2 250 >
每页显示 20 50 100
Customized Convolutional Neural Network for Accurate Detection of Deep Fake Images in Video Collections 被引量:1
1
作者 Dmitry Gura Bo Dong +1 位作者 Duaa Mehiar Nidal Al Said 《Computers, Materials & Continua》 SCIE EI 2024年第5期1995-2014,共20页
The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method in... The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos. 展开更多
关键词 Deep fake detection video analysis convolutional neural network machine learning video dataset collection facial landmark prediction accuracy models
下载PDF
MarkINeRV: A Robust Watermarking Scheme for Neural Representation for Videos Based on Invertible Neural Networks
2
作者 Wenquan Sun Jia Liu +2 位作者 Lifeng Chen Weina Dong Fuqiang Di 《Computers, Materials & Continua》 SCIE EI 2024年第9期4031-4046,共16页
Recent research advances in implicit neural representation have shown that a wide range of video data distributions are achieved by sharing model weights for Neural Representation for Videos(NeRV).While explicit metho... Recent research advances in implicit neural representation have shown that a wide range of video data distributions are achieved by sharing model weights for Neural Representation for Videos(NeRV).While explicit methods exist for accurately embedding ownership or copyright information in video data,the nascent NeRV framework has yet to address this issue comprehensively.In response,this paper introduces MarkINeRV,a scheme designed to embed watermarking information into video frames using an invertible neural network watermarking approach to protect the copyright of NeRV,which models the embedding and extraction of watermarks as a pair of inverse processes of a reversible network and employs the same network to achieve embedding and extraction of watermarks.It is just that the information flow is in the opposite direction.Additionally,a video frame quality enhancement module is incorporated to mitigate watermarking information losses in the rendering process and the possibility ofmalicious attacks during transmission,ensuring the accurate extraction of watermarking information through the invertible network’s inverse process.This paper evaluates the accuracy,robustness,and invisibility of MarkINeRV through multiple video datasets.The results demonstrate its efficacy in extracting watermarking information for copyright protection of NeRV.MarkINeRV represents a pioneering investigation into copyright issues surrounding NeRV. 展开更多
关键词 Invertible neural network neural representations for videos WATERMARKING ROBUSTNESS
下载PDF
The Role and Place of Artificial Neural Network Architectures Structural Redundancy in the Input Data Prototypes and Generalization Development
3
作者 Conrad Onésime Oboulhas Tsahat Ngoulou-A-Ndzeli Béranger Destin Ossibi 《Journal of Computer and Communications》 2024年第7期1-11,共11页
Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take ca... Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take care of something called the generalization of the neural network. The performance of Artificial Neural Networks (ANN) mostly depends upon its generalization capability. In this paper, we propose an innovative approach to enhance the generalization capability of artificial neural networks (ANN) using structural redundancy. A novel perspective on handling input data prototypes and their impact on the development of generalization, which could improve to ANN architectures accuracy and reliability is described. 展开更多
关键词 Multilayer Neural network Multidimensional Nonlinear Interpolation Generalization by Similarity Artificial Intelligence Prototype development
下载PDF
Workout Action Recognition in Video Streams Using an Attention Driven Residual DC-GRU Network 被引量:1
4
作者 Arnab Dey Samit Biswas Dac-Nhuong Le 《Computers, Materials & Continua》 SCIE EI 2024年第5期3067-3087,共21页
Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions i... Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd dataset serves as a catalyst for the development ofmore robust and effective fitnesstracking systems and ultimately promotes healthier lifestyles through improved exercise monitoring and analysis. 展开更多
关键词 Workout action recognition video stream action recognition residual network GRU ATTENTION
下载PDF
Adaptive Graph Convolutional Adjacency Matrix Network for Video Summarization
5
作者 Jing Zhang Guangli Wu Shanshan Song 《Computers, Materials & Continua》 SCIE EI 2024年第8期1947-1965,共19页
Video summarization aims to select key frames or key shots to create summaries for fast retrieval,compression,and efficient browsing of videos.Graph neural networks efficiently capture information about graph nodes an... Video summarization aims to select key frames or key shots to create summaries for fast retrieval,compression,and efficient browsing of videos.Graph neural networks efficiently capture information about graph nodes and their neighbors,but ignore the dynamic dependencies between nodes.To address this challenge,we propose an innovative Adaptive Graph Convolutional Adjacency Matrix Network(TAMGCN),leveraging the attention mechanism to dynamically adjust dependencies between graph nodes.Specifically,we first segment shots and extract features of each frame,then compute the representative features of each shot.Subsequently,we utilize the attention mechanism to dynamically adjust the adjacency matrix of the graph convolutional network to better capture the dynamic dependencies between graph nodes.Finally,we fuse temporal features extracted by Bi-directional Long Short-Term Memory network with structural features extracted by the graph convolutional network to generate high-quality summaries.Extensive experiments are conducted on two benchmark datasets,TVSum and SumMe,yielding F1-scores of 60.8%and 53.2%,respectively.Experimental results demonstrate that our method outperforms most state-of-the-art video summarization techniques. 展开更多
关键词 Attention mechanism deep learning graph neural network key-shot video summarization
下载PDF
Adaptive Learning Video Streaming with QoE in Multi-Home Heterogeneous Networks
6
作者 S.Vijayashaarathi S.NithyaKalyani 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期2881-2897,共17页
In recent years,real-time video streaming has grown in popularity.The growing popularity of the Internet of Things(IoT)and other wireless heterogeneous networks mandates that network resources be carefully apportioned... In recent years,real-time video streaming has grown in popularity.The growing popularity of the Internet of Things(IoT)and other wireless heterogeneous networks mandates that network resources be carefully apportioned among versatile users in order to achieve the best Quality of Experience(QoE)and performance objectives.Most researchers focused on Forward Error Correction(FEC)techniques when attempting to strike a balance between QoE and performance.However,as network capacity increases,the performance degrades,impacting the live visual experience.Recently,Deep Learning(DL)algorithms have been successfully integrated with FEC to stream videos across multiple heterogeneous networks.But these algorithms need to be changed to make the experience better without sacrificing packet loss and delay time.To address the previous challenge,this paper proposes a novel intelligent algorithm that streams video in multi-home heterogeneous networks based on network-centric characteristics.The proposed framework contains modules such as Intelligent Content Extraction Module(ICEM),Channel Status Monitor(CSM),and Adaptive FEC(AFEC).This framework adopts the Cognitive Learning-based Scheduling(CLS)Module,which works on the deep Reinforced Gated Recurrent Networks(RGRN)principle and embeds them along with the FEC to achieve better performances.The complete framework was developed using the Objective Modular Network Testbed in C++(OMNET++),Internet networking(INET),and Python 3.10,with Keras as the front end and Tensorflow 2.10 as the back end.With extensive experimentation,the proposed model outperforms the other existing intelligentmodels in terms of improving the QoE,minimizing the End-to-End Delay(EED),and maintaining the highest accuracy(98%)and a lower Root Mean Square Error(RMSE)value of 0.001. 展开更多
关键词 Real-time video streaming IoT multi-home heterogeneous networks forward error coding deep reinforced gated recurrent networks QOE prediction accuracy RMSE
下载PDF
Structural characteristics and influencing factors of spatial correlation network for regional high-quality development in China
7
作者 LIU Jian-jun LIU He 《Ecological Economy》 2023年第4期329-343,共15页
On the basis of measuring the regional high-quality development in China from 2011 to 2020,this study uses gravity model to build spatial correlation network,and uses social network analysis method to analyze the stru... On the basis of measuring the regional high-quality development in China from 2011 to 2020,this study uses gravity model to build spatial correlation network,and uses social network analysis method to analyze the structural characteristics and influencing factors of correlation network.The results are shown as follows.First,from 2011 to 2020,the level of regional high-quality development in China is rising gradually,and the discrete characteristics between regions are gradually obvious,showing a step-like distribution structure decreasing from east to west.Second,the network density of regional high-quality development is generally low and tends to decline,but it has strong stability and correlation strength.Third,the spatial correlation network has an obvious core-edge structure.Shanghai is always at the center of the network and plays a significant intermediary role,while Qinghai and Xinjiang are always at the edge of the network.Fourth,the regional high-quality development association network can be divided into four major sectors:main benefit,net benefit,net spillover,and broker,showing the spatial correlation characteristics of inter-plate contact and intra-plate agglomeration.Fifth,the level of economic development,the level of urbanization and geographical proximity have a significant impact on the formation of regional high-quality development correlation network. 展开更多
关键词 high quality development spatial association network influencing factors social network analysis
下载PDF
Machine Learning Based Classifiers for QoE Prediction Framework in Video Streaming over 5G Wireless Networks 被引量:1
8
作者 K.B.Ajeyprasaath P.Vetrivelan 《Computers, Materials & Continua》 SCIE EI 2023年第4期1919-1939,共21页
Recently,the combination of video services and 5G networks have been gaining attention in the wireless communication realm.With the brisk advancement in 5G network usage and the massive popularity of threedimensional ... Recently,the combination of video services and 5G networks have been gaining attention in the wireless communication realm.With the brisk advancement in 5G network usage and the massive popularity of threedimensional video streaming,the quality of experience(QoE)of video in 5G systems has been receiving overwhelming significance from both customers and service provider ends.Therefore,effectively categorizing QoE-aware video streaming is imperative for achieving greater client satisfaction.This work makes the following contribution:First,a simulation platform based on NS-3 is introduced to analyze and improve the performance of video services.The simulation is formulated to offer real-time measurements,saving the expensive expenses associated with real-world equipment.Second,A valuable framework for QoE-aware video streaming categorization is introduced in 5G networks based on machine learning(ML)by incorporating the hyperparameter tuning(HPT)principle.It implements an enhanced hyperparameter tuning(EHPT)ensemble and decision tree(DT)classifier for video streaming categorization.The performance of the ML approach is assessed by considering precision,accuracy,recall,and computation time metrics for manifesting the superiority of these classifiers regarding video streaming categorization.This paper demonstrates that our ML classifiers achieve QoE prediction accuracy of 92.59%for(EHPT)ensemble and 87.037%for decision tree(DT)classifiers. 展开更多
关键词 QoE-aware video streaming 5G networks wireless networks ensemble method
下载PDF
Research on Coordinated Development and Optimization of Distribution Networks at All Levels in Distributed Power Energy Engineering 被引量:1
9
作者 Zhuohan Jiang Jingyi Tu +2 位作者 Shuncheng Liu Jian Peng Guang Ouyang 《Energy Engineering》 EI 2023年第7期1655-1666,共12页
The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distribute... The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions.The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales. 展开更多
关键词 Distributed power generation energy engineering multiple time scales joint development of distribution network global optimization regional autonomy
下载PDF
Regional Economic Development Trend Prediction Method Based on Digital Twins and Time Series Network
10
作者 Runguo Xu Xuehan Yu Xiaoxue Zhao 《Computers, Materials & Continua》 SCIE EI 2023年第8期1781-1796,共16页
At present,the interpretation of regional economic development(RED)has changed from a simple evaluation of economic growth to a focus on economic growth and the optimization of economic structure,the improvement of ec... At present,the interpretation of regional economic development(RED)has changed from a simple evaluation of economic growth to a focus on economic growth and the optimization of economic structure,the improvement of economic relations,and the change of institutional innovation.This article uses the RED trend as the research object and constructs the RED index to conduct the theoretical analysis.Then this paper uses the attention mechanism based on digital twins and the time series network model to verify the actual data.Finally,the regional economy is predicted according to the theoretical model.The specific research work mainly includes the following aspects:1)This paper introduced the development status of research on time series networks and economic forecasting at home and abroad.2)This paper introduces the basic principles and structures of long and short-term memory(LSTM)and convolutional neural network(CNN),constructs an improved CNN-LSTM model combined with the attention mechanism,and then constructs a regional economic prediction index system.3)The best parameters of the model are selected through experiments,and the trained model is used for simulation experiment prediction.The results show that the CNN-LSTM model based on the attentionmechanism proposed in this paper has high accuracy in predicting regional economies. 展开更多
关键词 Regional economic development attention mechanism digital twins time series network
下载PDF
Wireless ad hoc video transmission:a Bayesian network-based scheme
11
作者 蒋荣欣 田翔 +1 位作者 谢立 陈耀武 《Journal of Southeast University(English Edition)》 EI CAS 2008年第4期407-413,共7页
A novel bandwidth prediction and control scheme is proposed for video transmission over an ad boc network. The scheme is based on cross-layer, feedback, and Bayesian network techniques. The impacts of video quality ar... A novel bandwidth prediction and control scheme is proposed for video transmission over an ad boc network. The scheme is based on cross-layer, feedback, and Bayesian network techniques. The impacts of video quality are formulized and deduced. The relevant factors are obtained by a cross-layer mechanism or Feedback method. According to these relevant factors, the variable set and the Bayesian network topology are determined. Then a Bayesian network prediction model is constructed. The results of the prediction can be used as the bandwidth of the mobile ad hoc network (MANET). According to the bandwidth, the video encoder is controlled to dynamically adjust and encode the right bit rates of a real-time video stream. Integrated simulation of a video streaming communication system is implemented to validate the proposed solution. In contrast to the conventional transfer scheme, the results of the experiment indicate that the proposed scheme can make the best use of the network bandwidth; there are considerable improvements in the packet loss and the visual quality of real-time video.K 展开更多
关键词 mobile ad hoc network (MANET) Bayesian network CROSS-LAYER IEEE 802. 11 real-time video streaming
下载PDF
A Sentence Retrieval Generation Network Guided Video Captioning
12
作者 Ou Ye Mimi Wang +3 位作者 Zhenhua Yu Yan Fu Shun Yi Jun Deng 《Computers, Materials & Continua》 SCIE EI 2023年第6期5675-5696,共22页
Currently,the video captioning models based on an encoder-decoder mainly rely on a single video input source.The contents of video captioning are limited since few studies employed external corpus information to guide... Currently,the video captioning models based on an encoder-decoder mainly rely on a single video input source.The contents of video captioning are limited since few studies employed external corpus information to guide the generation of video captioning,which is not conducive to the accurate descrip-tion and understanding of video content.To address this issue,a novel video captioning method guided by a sentence retrieval generation network(ED-SRG)is proposed in this paper.First,a ResNeXt network model,an efficient convolutional network for online video understanding(ECO)model,and a long short-term memory(LSTM)network model are integrated to construct an encoder-decoder,which is utilized to extract the 2D features,3D features,and object features of video data respectively.These features are decoded to generate textual sentences that conform to video content for sentence retrieval.Then,a sentence-transformer network model is employed to retrieve different sentences in an external corpus that are semantically similar to the above textual sentences.The candidate sentences are screened out through similarity measurement.Finally,a novel GPT-2 network model is constructed based on GPT-2 network structure.The model introduces a designed random selector to randomly select predicted words with a high probability in the corpus,which is used to guide and generate textual sentences that are more in line with human natural language expressions.The proposed method in this paper is compared with several existing works by experiments.The results show that the indicators BLEU-4,CIDEr,ROUGE_L,and METEOR are improved by 3.1%,1.3%,0.3%,and 1.5%on a public dataset MSVD and 1.3%,0.5%,0.2%,1.9%on a public dataset MSR-VTT respectively.It can be seen that the proposed method in this paper can generate video captioning with richer semantics than several state-of-the-art approaches. 展开更多
关键词 video captioning encoder-decoder sentence retrieval external corpus RS GPT-2 network model
下载PDF
Quantum Computing Based Neural Networks for Anomaly Classification in Real-Time Surveillance Videos
13
作者 MD.Yasar Arafath A.Niranjil Kumar 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2489-2508,共20页
For intelligent surveillance videos,anomaly detection is extremely important.Deep learning algorithms have been popular for evaluating realtime surveillance recordings,like traffic accidents,and criminal or unlawful i... For intelligent surveillance videos,anomaly detection is extremely important.Deep learning algorithms have been popular for evaluating realtime surveillance recordings,like traffic accidents,and criminal or unlawful incidents such as suicide attempts.Nevertheless,Deep learning methods for classification,like convolutional neural networks,necessitate a lot of computing power.Quantum computing is a branch of technology that solves abnormal and complex problems using quantum mechanics.As a result,the focus of this research is on developing a hybrid quantum computing model which is based on deep learning.This research develops a Quantum Computing-based Convolutional Neural Network(QC-CNN)to extract features and classify anomalies from surveillance footage.A Quantum-based Circuit,such as the real amplitude circuit,is utilized to improve the performance of the model.As far as my research,this is the first work to employ quantum deep learning techniques to classify anomalous events in video surveillance applications.There are 13 anomalies classified from the UCF-crime dataset.Based on experimental results,the proposed model is capable of efficiently classifying data concerning confusion matrix,Receiver Operating Characteristic(ROC),accuracy,Area Under Curve(AUC),precision,recall as well as F1-score.The proposed QC-CNN has attained the best accuracy of 95.65 percent which is 5.37%greater when compared to other existing models.To measure the efficiency of the proposed work,QC-CNN is also evaluated with classical and quantum models. 展开更多
关键词 Deep learning video surveillance quantum computing anomaly detection convolutional neural network
下载PDF
Neural Network Method for Colorimetry Calibration of Video Cameras 被引量:2
14
作者 周双全 赵达尊 《Journal of Beijing Institute of Technology》 EI CAS 2000年第1期31-36,共6页
To transfer the color data from a device (video camera) dependent color space into a device? independent color space, a multilayer feedforward network with the error backpropagation (BP) learning rule, was regarded ... To transfer the color data from a device (video camera) dependent color space into a device? independent color space, a multilayer feedforward network with the error backpropagation (BP) learning rule, was regarded as a nonlinear transformer realizing the mapping from the RGB color space to CIELAB color space. A variety of mapping accuracy were obtained with different network structures. BP neural networks can provide a satisfactory mapping accuracy in the field of color space transformation for video cameras. 展开更多
关键词 color space transformation neural network color video camera
下载PDF
In-Network Puncturing for Delay-Efficient Rate Control of Distributed Video Coding in Wireless Video Sensor Networks 被引量:1
15
作者 Zhang Haitao Ma Huadong 《China Communications》 SCIE CSCD 2012年第6期45-54,共10页
Wyner-Ziv Video Coding (WZVC) is considered as a promising video coding scheme for Wireless Video Sensor Networks (WVSNs) due to its high compression efficiency and error resilience functionalities, as well as its... Wyner-Ziv Video Coding (WZVC) is considered as a promising video coding scheme for Wireless Video Sensor Networks (WVSNs) due to its high compression efficiency and error resilience functionalities, as well as its low encoding complex- ity. To achieve a good Rate-Distortion (R-D) per- formance, the current WZVC paradi^prls usually a- dopt an end-to-end rate control scheme in which the decoder repeatedly requests the additional deco- ding data from the encoder for decoding Wyner-Ziv frames. Therefore, the waiting time of the additional decoding data is especially long in multihop WVSNs. In this paper, we propose a novel pro- gressive in-network rate control scheme for WZVC. The proposed in-network puncturing-based rate control scheme transfers the partial channel codes puncturing task from the encoder to the relay nodes. Then, the decoder can request the addition- al decoding data from the relay nodes instead of the encoder, and the total waiting time for deco- ding Wyner-Ziv frames is reduced consequently. Simulation results validate the proposed rate con- trol scheme. 展开更多
关键词 wireless video sensor networks dis-tributed video coding WZVC rate control delay-efficient
下载PDF
Integration and development of energy and information network in the Pan-Arctic region 被引量:2
16
作者 Xiaoxia Wei Jinyu Xiao +2 位作者 Zhe Wang Zhichun Wang Yun Tian 《Global Energy Interconnection》 2019年第6期505-513,共9页
The Global Energy Interconnection is an important strategic approach used to achieve efficient worldwide energy allocation.The idea of developing integrated power,information,and transportation networks provides incre... The Global Energy Interconnection is an important strategic approach used to achieve efficient worldwide energy allocation.The idea of developing integrated power,information,and transportation networks provides increased power interconnection functionality and meaning,helps condense forces,and accelerates the integration of global infrastructure.Correspondingly,it is envisaged that it will become the trend of industrial technological development in the future.In consideration of the current trend of integrated development,this study evaluates a possible plan of coordinated development of fiber-optic and power networks in the Pan-Arctic region.Firstly,the backbone network architecture of Global Energy Interconnection is introduced and the importance of the Arctic energy backbone network is confirmed.The energy consumption and developmental trend of global data centers are then analyzed.Subsequently,the global network traffic is predicted and analyzed by means of a polynomial regression model.Finally,in combination with the current construction of fiber-optic networks in the Pan-Arctic region,the advantages of the integration of the fiber-optic and power networks in this region are clarified in justification of the decision for the development of a Global Energy Interconnection scheme. 展开更多
关键词 Energy Interconnection Data center network traffic Integrated development of energy and information networks Global En ergy In terconnection
下载PDF
APPLICATION OF ARTIFICIAL NEURAL NETWORK IN COMPLEX SYSTEMS OF REGIONAL SUSTAINABLE DEVELOPMENT
17
作者 SHIChun PhilipJAMES GUOZhong-yang 《Chinese Geographical Science》 SCIE CSCD 2004年第1期1-8,共8页
Meeting the challenge of sustainable development requires substantial advances in understanding the interaction of natural and human systems. The dynamics of regional sustainable development could be addressed in the ... Meeting the challenge of sustainable development requires substantial advances in understanding the interaction of natural and human systems. The dynamics of regional sustainable development could be addressed in the context of complex system thinking. Three features of complex systems are that they are uncertain, non-linear and self-organizing. Modeling regional development requires a consideration of these features. This paper discusses the feasibility of using the artificial neural networt(ANN) to establish an adjustment prediction model for the complex systems of sustainable development (CSSD). Shanghai Municipality was selected as the research area to set up the model, from which reliable prediction data were produced in order to help regional development planning. A new approach, which could help to manage regional sustainable development, is then explored. 展开更多
关键词 complex systems sustainable development artificial neural network regional development
下载PDF
Development Methodologies for Network Softwarization: A Comparison of DevOps, NetOps, and Verification
18
作者 Mehmet Beyaz 《International Journal of Communications, Network and System Sciences》 2023年第5期97-104,共8页
This white paper explores three popular development methodologies for network softwarization: DevOps, NetOps, and Verification. The paper compares and contrasts the strengths and weaknesses of each approach and provid... This white paper explores three popular development methodologies for network softwarization: DevOps, NetOps, and Verification. The paper compares and contrasts the strengths and weaknesses of each approach and provides recommendations for organizations looking to adopt network softwarization. 展开更多
关键词 development Methodologies network Softwarization DevOps NetOps VERIFICATION Software-Defined networking network Function Virtualization Automation COLLABORATION Testing Validation network Operations network Management
下载PDF
Enhancing Social Capital Through Networking for Sustainable Tourism Development: An Application to Khon Kaen Province, Thailand
19
作者 Attama Nilnoppkun 《Sociology Study》 2012年第10期767-778,共12页
Social capital has been recognised as a factor affecting sustainable development in every discipline. A network or a partnership is identified as a "structural" form of social capital and a tool to empower participa... Social capital has been recognised as a factor affecting sustainable development in every discipline. A network or a partnership is identified as a "structural" form of social capital and a tool to empower participants in the networks. There is a belief that social networks can be initiated or created at every level of social capital, from micro to macro. However, the concept of community is the key component of social capital, creating both physical ties (geographical locality) and normative behaviours (sense of belonging). Therefore, this study is intended to enhance social capital at the community or micro-level, in order to sustain tourism development in those areas, and networking is initiated to enhance social capital. Participatory Action Research (PAR) was applied to tourism development in Kon Kaen Province. Tools and techniques used during this study included: observations, preliminary meetings, community meetings, tourism audits, workshops, and network meetings. Eleven districts in Khon Kaen were actively involved in the planning process. 展开更多
关键词 Social capital social network networkING sustainable development
下载PDF
The development of brain functional connectivity networks revealed by resting-state functional magnetic resonance imaging 被引量:3
20
作者 Chao-Lin Li Yan-Jun Deng +2 位作者 Yu-Hui He Hong-Chang Zhai Fu-Cang Jia 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第8期1419-1429,共11页
Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the... Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the independent components of activation and network connectivity between brain regions, we examined brain activity status and development trends in children aged 3 and 5 years. These data could provide a reference for brain function rehabilitation in children with illness or abnormal function. We acquired functional magnetic resonance images from 15 3-year-old children and 15 5-year-old children under natural sleep cond让ions. The participants were recruited from five kindergartens in the Nanshan District of Shenzhen City, China. The parents of the participants signed an informed consent form with the premise that they had been fully informed regarding the experimental protocol. We used masked independent component analysis and BrainNet Viewer software to explore the independent components of the brain and correlation connections between brain regions. We identified seven independent components in the two groups of children, including the executive control network, the dorsal attention network, the default mode network, the left frontoparietal network, the right frontoparietal network, the salience network, and the motor network. In the default mode network, the posterior cingulate cortex, medial frontal gyrus, and inferior parietal lobule were activated in both 3- and 5-year-old children, supporting the "three-brain region theory” of the default mode network. In the frontoparietal network, the frontal and parietal gyri were activated in the two groups of children, and functional connectivity was strengthened in 5-year-olds compared with 3-year-olds, although the nodes and network connections were not yet mature. The high-correlation network connections in the default mode networks and dorsal attention networks had been significantly strengthened in 5-year-olds vs. 3-year-olds. Further, the salience network in the 3-year-old children included an activated insula/inferior frontal gyrus-anterior cingulate cortex network circu让 and an activated thalamus-parahippocampal-posterior cingulate cortex-subcortical regions network circuit. By the age of 5 years, no des and high-correlation network connections (edges) were reduced in the salience network. Overall, activation of the dorsal attention network, default mode network, left frontoparietal network, and right frontoparietal network increased (the volume of activation increased, the signals strengthened, and the high-correlation connections increased and strengthened) in 5-year-olds compared with 3-year-olds, but activation in some brain nodes weakened or disappeared in the salience network, and the network connections (edges) were reduced. Between the ages of 3 and 5 years, we observed a tendency for function in some brain regions to be strengthened and for the generalization of activation to be reduced, indicating that specialization begins to develop at this time. The study protocol was approved by the local ethics committee of the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences in China with approval No. SIAT-IRB- 131115-H0075 on November 15, 2013. 展开更多
关键词 nerve REGENERATION FUNCTIONAL MRI BRAIN network FUNCTIONAL connectivity RESTING-STATE ICA BRAIN development children RESTING-STATE networkS INFANT template standardized neural REGENERATION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部