Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep...Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field.展开更多
This paper presents a detailed statistical exploration of crime trends in Chicago from 2001 to 2023, employing data from the Chicago Police Department’s publicly available crime database. The study aims to elucidate ...This paper presents a detailed statistical exploration of crime trends in Chicago from 2001 to 2023, employing data from the Chicago Police Department’s publicly available crime database. The study aims to elucidate the patterns, distribution, and variations in crime across different types and locations, providing a comprehensive picture of the city’s crime landscape through advanced data analytics and visualization techniques. Using exploratory data analysis (EDA), we identified significant insights into crime trends, including the prevalence of theft and battery, the impact of seasonal changes on crime rates, and spatial concentrations of criminal activities. The research leveraged a Power BI dashboard to visually represent crime data, facilitating an intuitive understanding of complex patterns and enabling dynamic interaction with the dataset. Key findings highlight notable disparities in crime occurrences by type, location, and time, offering a granular view of crime hotspots and temporal trends. Additionally, the study examines clearance rates, revealing variations in the resolution of cases across different crime categories. This analysis not only sheds light on the current state of urban safety but also serves as a critical tool for policymakers and law enforcement agencies to develop targeted interventions. The paper concludes with recommendations for enhancing public safety strategies and suggests directions for future research, emphasizing the need for continuous data-driven approaches to effectively address and mitigate urban crime. This study contributes to the broader discourse on urban safety, crime prevention, and the role of data analytics in public policy and community well-being.展开更多
The advent of the Age of Information brings about bright prospects to Network-based Language Learning(NBLL).The thesis adopts the Engagement Theory as guided principles.The purpose is to use the novel NBLL model effec...The advent of the Age of Information brings about bright prospects to Network-based Language Learning(NBLL).The thesis adopts the Engagement Theory as guided principles.The purpose is to use the novel NBLL model effectively with the help of modern technology especially in less-developed areas.This thesis focuses on network-based experimental study.The research shows that the students under NBLL environment have cultivated the capabilities in information collection,computer operation,and information evaluation,as well as the abilities in problem solving,reasoning with criticism,and cooperating with others.展开更多
A network-based Virtual Private Network (VPN) architecture by using fundamental routing mechanism is proposed. This network is a virtual overlay network based on the relay of IP-in-IP tunneling of virtual routing modu...A network-based Virtual Private Network (VPN) architecture by using fundamental routing mechanism is proposed. This network is a virtual overlay network based on the relay of IP-in-IP tunneling of virtual routing modules. The packet format employs the encapsulation of IPSec ESP(Encapsulating Security Payload), an impact path code and an extended DS(Differentiated Services) code to support multi-path routing and QoS. Comparing with other models of VPN, this network system can be deployed in the current network with little investment, and it is easy to implement. The simulation result shows its performance is better than the traditional VPN system of black box mode.展开更多
An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variat...An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability.展开更多
Semiconductor manufacturing (SM) system is one of the most complicated hybrid processes involved continuously variable dynamical systems and discrete event dynamical systems. The optimization and scheduling of semicon...Semiconductor manufacturing (SM) system is one of the most complicated hybrid processes involved continuously variable dynamical systems and discrete event dynamical systems. The optimization and scheduling of semiconductor fabrication has long been a hot research direction in automation. Bottleneck is the key factor to a SM system, which seriously influences the throughput rate, cycle time, time-delivery rate, etc. Efficient prediction for the bottleneck of a SM system provides the best support for the consequent scheduling. Because categorical data (product types, releasing strategies) and numerical data (work in process, processing time, utilization rate, buffer length, etc.) have significant effect on bottleneck, an improved adaptive network-based fuzzy inference system (ANFIS) was adopted in this study to predict bottleneck since conventional neural network-based methods accommodate only numerical inputs. In this improved ANFIS, the contribution of categorical inputs to firing strength is reflected through a transformation matrix. In order to tackle high-dimensional inputs, reduce the number of fuzzy rules and obtain high prediction accuracy, a fuzzy c-means method combining binary tree linear division method was applied to identify the initial structure of fuzzy inference system. According to the experimental results, the main-bottleneck and sub-bottleneck of SM system can be predicted accurately with the proposed method.展开更多
This paper investigates the remote tracking control problem of Network-based Agents with communication delays existing in both forward and feedback communication channels.A networked predictive tracking controller is ...This paper investigates the remote tracking control problem of Network-based Agents with communication delays existing in both forward and feedback communication channels.A networked predictive tracking controller is proposed to compensate the negative effects caused by bilateral time-delays in a wireless network. Furthermore, the problem of consecutive data loss in the feedback channel is solved using aforementioned controller, where lateral movement perturbations are introduced.Simulations and experiments are provided for several cases,which verify the realizability and effectiveness of the proposed controller.展开更多
A parallel neural network-based controller (PNNC) is presented for the motion control of underwater vehicles in this paper. It consists of a real-time part, a self-learning part and a desired-state programmer, and i...A parallel neural network-based controller (PNNC) is presented for the motion control of underwater vehicles in this paper. It consists of a real-time part, a self-learning part and a desired-state programmer, and it is different from normal adaptive neural network controller in structure. Owing to the introduction of the self-learning part, on-line learning can be performed without sample data in several sample periods, resulting in high learning speed of the controller and good control performance. The desired-state programmer is utilized to obtain better learning samples of the neural network to keep the stability of the controller. The developed controller is applied to the 4-degree of freedom control of the AUV “IUV- IV” and is successful on the simulation platform. The control performance is also compared with that of neural network controller with different structures such as normal adaptive neural network and different learning methods. Current effects and surge velocity control are also included to demonstrate the controller' s performance. It is shown that the PNNC has a great possibility to solve the problems in the control system design of underwater vehicles.展开更多
In order to make equipment run safely, economically and continuously, some new maintenance models were put forward to improve the equipment after-sale maintenance service, such as E-maintenance, third-party maintenanc...In order to make equipment run safely, economically and continuously, some new maintenance models were put forward to improve the equipment after-sale maintenance service, such as E-maintenance, third-party maintenance, etc. To certain extent, the models solved the problem of the distance between the manufacturer and customer and the dispersion of the maintenance technologies, however, those resources are still widely distributed and do not collaborate efficiently. In this paper, a network-based collaborative maintenance service model was proposed for after-sales equipment to solve the problem of maintenance resources integration. Concretely, equipment designers, maintainers, spare parts suppliers and maintenance experts were grouped together to establish dynamic alliance. The leader of the alliance is the manufacturer under guaranty period or equipment user exceeding the guaranty period. The process of maintenance service was divided into three stages which are fault diagnosis, maintenance decision and maintenance implementation. The sub-alliances were established to carry out maintenance work at each stage. In addition, the business process of network-based collaborative maintenance was analyzed and collaborative business system for equipment's after-sales collaborative maintenance service was designed. In the end, an informational economics model of network-based collaborative maintenance was established to demonstrate the effectiveness of this maintenance model.展开更多
Static secure techniques, such as firewall, hierarchy filtering, distributed disposing,layer management, autonomy agent, secure communication, were introduced in distributed intrusion detection. The self-protection ag...Static secure techniques, such as firewall, hierarchy filtering, distributed disposing,layer management, autonomy agent, secure communication, were introduced in distributed intrusion detection. The self-protection agents were designed, which have the distributed architecture,cooperate with the agents in intrusion detection in a loose-coupled manner, protect the security of intrusion detection system, and respond to the intrusion actively. A prototype self-protection agent was implemented by using the packet filter in operation system kernel. The results show that all the hosts with the part of network-based intrusion detection system and the whole intrusion detection system are invisible from the outside and network scanning, and cannot apperceive the existence of network-based intrusion detection system. The communication between every part is secure. In the low layer, the packet streams are controlled to avoid the buffer leaks exist ing in some system service process and back-door programs, so as to prevent users from misusing and vicious attack like Trojan Horse effectively.展开更多
To respond to the further development of college English reforms,many universities employed network-based selflearning classes to aid the traditional classroom teaching,especially in teaching listening,but as time wen...To respond to the further development of college English reforms,many universities employed network-based selflearning classes to aid the traditional classroom teaching,especially in teaching listening,but as time went by,some universities gradually gave them up.The paper intends to reflect on the employment of network-based self-learning listening classes,analyz ing the learning with and without its aid,and meanwhile introduce the need to re-employ it,and discuss how we can improve the network-based self-learning classes to help with students' listening.展开更多
A new method that stabilizes network-based systems with both bounded delay and packet disordering is discussed under the state feedback controller. A novel model, fully describing the dynamic characteristic of network...A new method that stabilizes network-based systems with both bounded delay and packet disordering is discussed under the state feedback controller. A novel model, fully describing the dynamic characteristic of network-based systems with packet disordering, is constructed. Different from the existing models of network-based systems, the number of delay items is time-varying in the model proposed. Further, this model is converted into a parameter-uncertain discrete-time system with time-varying delay item numbers in terms of matrix theory. Moreover, the less conservative stability condition is obtained by avoiding utilisation of Moon et al.’ inequality and bounding inequalities for quadratic functional terms. By solving a minization problem based on linear matrix inequalities, the state feedback controller is presented. A numerical example is given to illustrate the effectiveness of the proposed method.展开更多
Error codes induced by M-ary modulation and modulation selection in network-based control systems are studied.It is the first time the issue of error codes induced by M-ary modulation is addressed in control field.In ...Error codes induced by M-ary modulation and modulation selection in network-based control systems are studied.It is the first time the issue of error codes induced by M-ary modulation is addressed in control field.In network-based control systems,error codes induced by noisy channel can significantly decrease the quality of control.To solve this problem,the network-based control system with delay and noisy channel is firstly modeled as an asynchronous dynamic system(ADS).Secondly,conditions of packet with error codes(PEC)loss rate by using M-ary modulation are obtained based on dynamic output feedback scheme.Thirdly,more importantly,the selection principle of M-ary modulation is proposed according to the measured signal-to-noise ratio(SNR)and conditions of PEC loss rate.Finally,system stability is analyzed and controller is designed through Lyapunov function and linear matrix inequality(LMI)scheme,and numerical simulations are made to demonstrate the effectiveness of the proposed scheme.展开更多
文摘Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field.
文摘This paper presents a detailed statistical exploration of crime trends in Chicago from 2001 to 2023, employing data from the Chicago Police Department’s publicly available crime database. The study aims to elucidate the patterns, distribution, and variations in crime across different types and locations, providing a comprehensive picture of the city’s crime landscape through advanced data analytics and visualization techniques. Using exploratory data analysis (EDA), we identified significant insights into crime trends, including the prevalence of theft and battery, the impact of seasonal changes on crime rates, and spatial concentrations of criminal activities. The research leveraged a Power BI dashboard to visually represent crime data, facilitating an intuitive understanding of complex patterns and enabling dynamic interaction with the dataset. Key findings highlight notable disparities in crime occurrences by type, location, and time, offering a granular view of crime hotspots and temporal trends. Additionally, the study examines clearance rates, revealing variations in the resolution of cases across different crime categories. This analysis not only sheds light on the current state of urban safety but also serves as a critical tool for policymakers and law enforcement agencies to develop targeted interventions. The paper concludes with recommendations for enhancing public safety strategies and suggests directions for future research, emphasizing the need for continuous data-driven approaches to effectively address and mitigate urban crime. This study contributes to the broader discourse on urban safety, crime prevention, and the role of data analytics in public policy and community well-being.
文摘The advent of the Age of Information brings about bright prospects to Network-based Language Learning(NBLL).The thesis adopts the Engagement Theory as guided principles.The purpose is to use the novel NBLL model effectively with the help of modern technology especially in less-developed areas.This thesis focuses on network-based experimental study.The research shows that the students under NBLL environment have cultivated the capabilities in information collection,computer operation,and information evaluation,as well as the abilities in problem solving,reasoning with criticism,and cooperating with others.
文摘A network-based Virtual Private Network (VPN) architecture by using fundamental routing mechanism is proposed. This network is a virtual overlay network based on the relay of IP-in-IP tunneling of virtual routing modules. The packet format employs the encapsulation of IPSec ESP(Encapsulating Security Payload), an impact path code and an extended DS(Differentiated Services) code to support multi-path routing and QoS. Comparing with other models of VPN, this network system can be deployed in the current network with little investment, and it is easy to implement. The simulation result shows its performance is better than the traditional VPN system of black box mode.
基金The National Natural Science Foundation of China under contract No.51379002the Fundamental Research Funds for the Central Universities of China under contract Nos 3132016322 and 3132016314the Applied Basic Research Project Fund of the Chinese Ministry of Transport of China under contract No.2014329225010
文摘An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability.
基金Supported by the National Key Basic Research and Development Program of China (2009CB320602)the National Natural Science Foundation of China (60834004, 61025018)+2 种基金the Open Project Program of the State Key Lab of Industrial ControlTechnology (ICT1108)the Open Project Program of the State Key Lab of CAD & CG (A1120)the Foundation of Key Laboratory of System Control and Information Processing (SCIP2011005),Ministry of Education,China
文摘Semiconductor manufacturing (SM) system is one of the most complicated hybrid processes involved continuously variable dynamical systems and discrete event dynamical systems. The optimization and scheduling of semiconductor fabrication has long been a hot research direction in automation. Bottleneck is the key factor to a SM system, which seriously influences the throughput rate, cycle time, time-delivery rate, etc. Efficient prediction for the bottleneck of a SM system provides the best support for the consequent scheduling. Because categorical data (product types, releasing strategies) and numerical data (work in process, processing time, utilization rate, buffer length, etc.) have significant effect on bottleneck, an improved adaptive network-based fuzzy inference system (ANFIS) was adopted in this study to predict bottleneck since conventional neural network-based methods accommodate only numerical inputs. In this improved ANFIS, the contribution of categorical inputs to firing strength is reflected through a transformation matrix. In order to tackle high-dimensional inputs, reduce the number of fuzzy rules and obtain high prediction accuracy, a fuzzy c-means method combining binary tree linear division method was applied to identify the initial structure of fuzzy inference system. According to the experimental results, the main-bottleneck and sub-bottleneck of SM system can be predicted accurately with the proposed method.
基金supported in part by the National Natural Science Foundation of China(61333003,61690212)
文摘This paper investigates the remote tracking control problem of Network-based Agents with communication delays existing in both forward and feedback communication channels.A networked predictive tracking controller is proposed to compensate the negative effects caused by bilateral time-delays in a wireless network. Furthermore, the problem of consecutive data loss in the feedback channel is solved using aforementioned controller, where lateral movement perturbations are introduced.Simulations and experiments are provided for several cases,which verify the realizability and effectiveness of the proposed controller.
文摘A parallel neural network-based controller (PNNC) is presented for the motion control of underwater vehicles in this paper. It consists of a real-time part, a self-learning part and a desired-state programmer, and it is different from normal adaptive neural network controller in structure. Owing to the introduction of the self-learning part, on-line learning can be performed without sample data in several sample periods, resulting in high learning speed of the controller and good control performance. The desired-state programmer is utilized to obtain better learning samples of the neural network to keep the stability of the controller. The developed controller is applied to the 4-degree of freedom control of the AUV “IUV- IV” and is successful on the simulation platform. The control performance is also compared with that of neural network controller with different structures such as normal adaptive neural network and different learning methods. Current effects and surge velocity control are also included to demonstrate the controller' s performance. It is shown that the PNNC has a great possibility to solve the problems in the control system design of underwater vehicles.
基金supported by National Natural Science Foundation of China (Grant No. 70301012)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA04Z369-1)Innovative Talent Project of the Third Stage of "211" Project, Chongqing University, China (Grant No. S-09107)
文摘In order to make equipment run safely, economically and continuously, some new maintenance models were put forward to improve the equipment after-sale maintenance service, such as E-maintenance, third-party maintenance, etc. To certain extent, the models solved the problem of the distance between the manufacturer and customer and the dispersion of the maintenance technologies, however, those resources are still widely distributed and do not collaborate efficiently. In this paper, a network-based collaborative maintenance service model was proposed for after-sales equipment to solve the problem of maintenance resources integration. Concretely, equipment designers, maintainers, spare parts suppliers and maintenance experts were grouped together to establish dynamic alliance. The leader of the alliance is the manufacturer under guaranty period or equipment user exceeding the guaranty period. The process of maintenance service was divided into three stages which are fault diagnosis, maintenance decision and maintenance implementation. The sub-alliances were established to carry out maintenance work at each stage. In addition, the business process of network-based collaborative maintenance was analyzed and collaborative business system for equipment's after-sales collaborative maintenance service was designed. In the end, an informational economics model of network-based collaborative maintenance was established to demonstrate the effectiveness of this maintenance model.
文摘Static secure techniques, such as firewall, hierarchy filtering, distributed disposing,layer management, autonomy agent, secure communication, were introduced in distributed intrusion detection. The self-protection agents were designed, which have the distributed architecture,cooperate with the agents in intrusion detection in a loose-coupled manner, protect the security of intrusion detection system, and respond to the intrusion actively. A prototype self-protection agent was implemented by using the packet filter in operation system kernel. The results show that all the hosts with the part of network-based intrusion detection system and the whole intrusion detection system are invisible from the outside and network scanning, and cannot apperceive the existence of network-based intrusion detection system. The communication between every part is secure. In the low layer, the packet streams are controlled to avoid the buffer leaks exist ing in some system service process and back-door programs, so as to prevent users from misusing and vicious attack like Trojan Horse effectively.
文摘To respond to the further development of college English reforms,many universities employed network-based selflearning classes to aid the traditional classroom teaching,especially in teaching listening,but as time went by,some universities gradually gave them up.The paper intends to reflect on the employment of network-based self-learning listening classes,analyz ing the learning with and without its aid,and meanwhile introduce the need to re-employ it,and discuss how we can improve the network-based self-learning classes to help with students' listening.
基金supported by the National Natural Science Foundation of China (60874057 60725312+3 种基金 61074029)the Liaoning Provincal Foundation of Science and Technology (20082023)the Natural Science Foundation of Liaoning Province (20092083)China Postdoctoral Science Foundation Project (20100471488)
文摘A new method that stabilizes network-based systems with both bounded delay and packet disordering is discussed under the state feedback controller. A novel model, fully describing the dynamic characteristic of network-based systems with packet disordering, is constructed. Different from the existing models of network-based systems, the number of delay items is time-varying in the model proposed. Further, this model is converted into a parameter-uncertain discrete-time system with time-varying delay item numbers in terms of matrix theory. Moreover, the less conservative stability condition is obtained by avoiding utilisation of Moon et al.’ inequality and bounding inequalities for quadratic functional terms. By solving a minization problem based on linear matrix inequalities, the state feedback controller is presented. A numerical example is given to illustrate the effectiveness of the proposed method.
基金Project(61172022) supported by the National Natural Science Foundation of ChinaProject(GDW20151100010) supported by the State Administration of Foreign Experts Affairs of China
文摘Error codes induced by M-ary modulation and modulation selection in network-based control systems are studied.It is the first time the issue of error codes induced by M-ary modulation is addressed in control field.In network-based control systems,error codes induced by noisy channel can significantly decrease the quality of control.To solve this problem,the network-based control system with delay and noisy channel is firstly modeled as an asynchronous dynamic system(ADS).Secondly,conditions of packet with error codes(PEC)loss rate by using M-ary modulation are obtained based on dynamic output feedback scheme.Thirdly,more importantly,the selection principle of M-ary modulation is proposed according to the measured signal-to-noise ratio(SNR)and conditions of PEC loss rate.Finally,system stability is analyzed and controller is designed through Lyapunov function and linear matrix inequality(LMI)scheme,and numerical simulations are made to demonstrate the effectiveness of the proposed scheme.