This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-trigger...This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-triggered strategy.Due to the fact that only integers can work in the Pailler cryptosystem,both the real-valued control gain and system state need to be first quantized before encryption.This is dramatically different from the existing quantized control methods,where only the quantization of a single value,e.g.,the control input or the system state,is considered.To handle this issue,static and dynamic quantization policies are presented,which achieve the desired integer conversions and guarantee asymptotic convergence of the quantized system state to the equilibrium.Then,the quantized system state is encrypted and sent to the controller when the triggering condition,specified by a state-based event-triggered strategy,is satisfied.By doing so,not only the security and confidentiality of data transmitted over the communication network are protected,but also the ciphertext expansion phenomenon can be relieved.Additionally,by tactfully designing the quantization sensitivities and triggering error,the proposed event-driven encrypted control framework ensures the asymptotic stability of the overall closedloop system.Finally,a simulation example of the secure motion control for an inverted pendulum cart system is presented to evaluate the effectiveness of the theoretical results.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication...This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.展开更多
A deep learning access controlmodel based on user preferences is proposed to address the issue of personal privacy leakage in social networks.Firstly,socialusers andsocialdata entities are extractedfromthe social netw...A deep learning access controlmodel based on user preferences is proposed to address the issue of personal privacy leakage in social networks.Firstly,socialusers andsocialdata entities are extractedfromthe social networkandused to construct homogeneous and heterogeneous graphs.Secondly,a graph neural networkmodel is designed based on user daily social behavior and daily social data to simulate the dissemination and changes of user social preferences and user personal preferences in the social network.Then,high-order neighbor nodes,hidden neighbor nodes,displayed neighbor nodes,and social data nodes are used to update user nodes to expand the depth and breadth of user preferences.Finally,a multi-layer attention network is used to classify user nodes in the homogeneous graph into two classes:allow access and deny access.The fine-grained access control problem in social networks is transformed into a node classification problem in a graph neural network.The model is validated using a dataset and compared with other methods without losing generality.The model improved accuracy by 2.18%compared to the baseline method GraphSAGE,and improved F1 score by 1.45%compared to the baseline method,verifying the effectiveness of the model.展开更多
This paper addresses the decentralized consensus problem for a system of multiple dynamic agents with remote controllers via networking,known as a networked control multi-agent system(NCMAS).It presents a challenging ...This paper addresses the decentralized consensus problem for a system of multiple dynamic agents with remote controllers via networking,known as a networked control multi-agent system(NCMAS).It presents a challenging scenario where partial dynamic entities or remote control units are vulnerable to disclosure attacks,making them potentially malicious.To tackle this issue,we propose a secure decentralized control design approach employing a double-layer cryptographic strategy.This approach not only ensures that the input and output information of the benign entities remains protected from the malicious entities but also practically achieves consensus performance.The paper provides an explicit design,supported by theoretical proof and numerical verification,covering stability,steady-state error,and the prevention of computation overflow or underflow.展开更多
This paper discusses H-infinity state feedback control for a networked control system with time-varying delays. Based on the flee-weighing matrix method, a dehy-dependent stability criterion satisfying a prescribed H-...This paper discusses H-infinity state feedback control for a networked control system with time-varying delays. Based on the flee-weighing matrix method, a dehy-dependent stability criterion satisfying a prescribed H-infinity norm bound is presented for an NCS with unknown, time-varying and bounded delays. And then, the criterion is transformed into sufficient conditions based on linear matrix inequalities for H-infinity control. The conditions thus obtained are also used to design an H-infinity state feedback controller. This design method is further extended to solve the design problem of robust H-infinity state feedback control. A numerical example demonstrates the validity of the method.展开更多
Network-induced delay and jitter are key factors causing performance degradation and instability of NCSs (networked control systems). The relationships between the sampling periods of the control loops, network-induce...Network-induced delay and jitter are key factors causing performance degradation and instability of NCSs (networked control systems). The relationships between the sampling periods of the control loops, network-induced delay and jitter were studied aimed at token-type networks. A jitter-dependent optimal bandwidth scheduling algorithm for NCSs is proposed, which tries to achieve a tradeoff between bandwidth occupancy and system performance. Simulation tests proved the effectiveness of this optimal scheduling algorithm.展开更多
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.展开更多
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Co...This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Considering the model complexity and input deadzone,a fractional-order ultra-local model is proposed to formulate the original dynamic system for simple controller design.Firstly,the control gain of ultra-local model is considered as a constant.The fractional-order sliding mode technique is designed to stabilize the closed-loop system,while fractional-order time-delay estimation is combined with neural network to estimate the lumped disturbance.Correspondingly,a fractional-order ultra-local model-based neural network sliding mode controller(FO-NNSMC) is proposed.Secondly,to avoid disadvantageous effect of improper gain selection on the control performance,the control gain of ultra-local model is considered as an unknown parameter.Then,the Nussbaum technique is introduced into the FO-NNSMC to deal with the stability problem with unknown gain.Correspondingly,a fractional-order ultra-local model-based adaptive neural network sliding mode controller(FO-ANNSMC) is proposed.Moreover,the stability analysis of the closed-loop system with the proposed method is presented by using the Lyapunov theory.Finally,with the co-simulations on virtual prototype of 7-DOF iReHave upper-limb exoskeleton and experiments on 2-DOF upper-limb exoskeleton,the obtained compared results illustrate the effectiveness and superiority of the proposed method.展开更多
Set stabilization is one of the essential problems in engineering systems, and self-triggered control(STC) can save the storage space for interactive information, and can be successfully applied in networked control s...Set stabilization is one of the essential problems in engineering systems, and self-triggered control(STC) can save the storage space for interactive information, and can be successfully applied in networked control systems with limited communication resources. In this study, the set stabilization problem and STC design of Boolean control networks are investigated via the semi-tensor product technique. On the one hand, the largest control invariant subset is calculated in terms of the strongly connected components of the state transition graph, by which a graph-theoretical condition for set stabilization is derived. On the other hand, a characteristic function is exploited to determine the triggering mechanism and feasible controls. Based on this, the minimum-time and minimum-triggering open-loop, state-feedback and output-feedback STCs for set stabilization are designed,respectively. As classic applications of self-triggered set stabilization, self-triggered synchronization, self-triggered output tracking and self-triggered output regulation are discussed as well. Additionally, several practical examples are given to illustrate the effectiveness of theoretical results.展开更多
With the rapid development of network technology and control technology,a networked multi-agent control system is a key direction of modern industrial control systems,such as industrial Internet systems.This paper stu...With the rapid development of network technology and control technology,a networked multi-agent control system is a key direction of modern industrial control systems,such as industrial Internet systems.This paper studies the tracking control problem of networked multi-agent systems with communication constraints,where each agent has no information on the dynamics of other agents except their outputs.A networked predictive proportional integral derivative(PPID)tracking scheme is proposed to achieve the desired tracking performance,compensate actively for communication delays,and simplify implementation in a distributed manner.This scheme combines the past,present and predictive information of neighbour agents to form a tracking error signal for each agent,and applies the proportional,integral,and derivative of the agent tracking error signal to control each individual agent.The criteria of the stability and output tracking consensus of multi-agent systems with the networked PPID tracking scheme are derived through detailed analysis on the closed-loop systems.The effectiveness of the networked PPID tracking scheme is illustrated via an example.展开更多
This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighte...This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighted.The influence of inter-layer couplings on the target controllability of multi-layer networks is discussed.It is found that even if there exists a layer which is not target controllable,the entire multi-layer network can still be target controllable due to the inter-layer couplings.For the multi-layer networks with general structure,a necessary and sufficient condition for target controllability is given by establishing the relationship between uncontrollable subspace and output matrix.By the derived condition,it can be found that the system may be target controllable even if it is not state controllable.On this basis,two corollaries are derived,which clarify the relationship between target controllability,state controllability and output controllability.For the multi-layer networks where the inter-layer couplings are directed chains and directed stars,sufficient conditions for target controllability of networked systems are given,respectively.These conditions are easier to verify than the classic criterion.展开更多
In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and comp...In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.展开更多
As industrialization and informatization becomemore deeply intertwined,industrial control networks have entered an era of intelligence.The connection between industrial control networks and the external internet is be...As industrialization and informatization becomemore deeply intertwined,industrial control networks have entered an era of intelligence.The connection between industrial control networks and the external internet is becoming increasingly close,which leads to frequent security accidents.This paper proposes a model for the industrial control network.It includes a malware containment strategy that integrates intrusion detection,quarantine,and monitoring.Basedonthismodel,the role of keynodes in the spreadofmalware is studied,a comparisonexperiment is conducted to validate the impact of the containment strategy.In addition,the dynamic behavior of the model is analyzed,the basic reproduction number is computed,and the disease-free and endemic equilibrium of the model is also obtained by the basic reproduction number.Moreover,through simulation experiments,the effectiveness of the containment strategy is validated,the influence of the relevant parameters is analyzed,and the containment strategy is optimized.In otherwords,selective immunity to key nodes can effectively suppress the spread ofmalware andmaintain the stability of industrial control systems.The earlier the immunization of key nodes,the better.Once the time exceeds the threshold,immunizing key nodes is almost ineffective.The analysis provides a better way to contain the malware in the industrial control network.展开更多
In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a...In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application.展开更多
This study presents a neural network-based model for predicting linear quadratic regulator(LQR)weighting matrices for achieving a target response reduction.Based on the expected weighting matrices,the LQR algorithm is...This study presents a neural network-based model for predicting linear quadratic regulator(LQR)weighting matrices for achieving a target response reduction.Based on the expected weighting matrices,the LQR algorithm is used to determine the various responses of the structure.The responses are determined by numerically analyzing the governing equation of motion using the state-space approach.For training a neural network,four input parameters are considered:the time history of the ground motion,the percentage reduction in lateral displacement,lateral velocity,and lateral acceleration,Output parameters are LQR weighting matrices.To study the effectiveness of an LQR-based neural network(LQRNN),the actual percentage reduction in the responses obtained from using LQRNN is compared with the target percentage reductions.Furthermore,to investigate the efficacy of an active control system using LQRNN,the controlled responses of a system are compared to the corresponding uncontrolled responses.The trained neural network effectively predicts weighting parameters that can provide a percentage reduction in displacement,velocity,and acceleration close to the target percentage reduction.Based on the simulation study,it can be concluded that significant response reductions are observed in the active-controlled system using LQRNN.Moreover,the LQRNN algorithm can replace conventional LQR control with the use of an active control system.展开更多
In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory...In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.展开更多
The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is...The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.展开更多
In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set f...In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.展开更多
基金the Research Grants Council of Hong Kong(CityU 21208921)the Chow Sang Sang Group Research Fund Sponsored by Chow Sang Sang Holdings International Ltd.
文摘This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-triggered strategy.Due to the fact that only integers can work in the Pailler cryptosystem,both the real-valued control gain and system state need to be first quantized before encryption.This is dramatically different from the existing quantized control methods,where only the quantization of a single value,e.g.,the control input or the system state,is considered.To handle this issue,static and dynamic quantization policies are presented,which achieve the desired integer conversions and guarantee asymptotic convergence of the quantized system state to the equilibrium.Then,the quantized system state is encrypted and sent to the controller when the triggering condition,specified by a state-based event-triggered strategy,is satisfied.By doing so,not only the security and confidentiality of data transmitted over the communication network are protected,but also the ciphertext expansion phenomenon can be relieved.Additionally,by tactfully designing the quantization sensitivities and triggering error,the proposed event-driven encrypted control framework ensures the asymptotic stability of the overall closedloop system.Finally,a simulation example of the secure motion control for an inverted pendulum cart system is presented to evaluate the effectiveness of the theoretical results.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金supported in part by the National Natural Science Foundation of China (61933007,62273087,U22A2044,61973102,62073180)the Shanghai Pujiang Program of China (22PJ1400400)+1 种基金the Royal Society of the UKthe Alexander von Humboldt Foundation of Germany。
文摘This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.
基金supported by the National Natural Science Foundation of China Project(No.62302540)The Open Foundation of Henan Key Laboratory of Cyberspace Situation Awareness(No.HNTS2022020)+2 种基金Natural Science Foundation of Henan Province Project(No.232300420422)The Natural Science Foundation of Zhongyuan University of Technology(No.K2023QN018)Key Research and Promotion Project of Henan Province in 2021(No.212102310480).
文摘A deep learning access controlmodel based on user preferences is proposed to address the issue of personal privacy leakage in social networks.Firstly,socialusers andsocialdata entities are extractedfromthe social networkandused to construct homogeneous and heterogeneous graphs.Secondly,a graph neural networkmodel is designed based on user daily social behavior and daily social data to simulate the dissemination and changes of user social preferences and user personal preferences in the social network.Then,high-order neighbor nodes,hidden neighbor nodes,displayed neighbor nodes,and social data nodes are used to update user nodes to expand the depth and breadth of user preferences.Finally,a multi-layer attention network is used to classify user nodes in the homogeneous graph into two classes:allow access and deny access.The fine-grained access control problem in social networks is transformed into a node classification problem in a graph neural network.The model is validated using a dataset and compared with other methods without losing generality.The model improved accuracy by 2.18%compared to the baseline method GraphSAGE,and improved F1 score by 1.45%compared to the baseline method,verifying the effectiveness of the model.
文摘This paper addresses the decentralized consensus problem for a system of multiple dynamic agents with remote controllers via networking,known as a networked control multi-agent system(NCMAS).It presents a challenging scenario where partial dynamic entities or remote control units are vulnerable to disclosure attacks,making them potentially malicious.To tackle this issue,we propose a secure decentralized control design approach employing a double-layer cryptographic strategy.This approach not only ensures that the input and output information of the benign entities remains protected from the malicious entities but also practically achieves consensus performance.The paper provides an explicit design,supported by theoretical proof and numerical verification,covering stability,steady-state error,and the prevention of computation overflow or underflow.
文摘This paper discusses H-infinity state feedback control for a networked control system with time-varying delays. Based on the flee-weighing matrix method, a dehy-dependent stability criterion satisfying a prescribed H-infinity norm bound is presented for an NCS with unknown, time-varying and bounded delays. And then, the criterion is transformed into sufficient conditions based on linear matrix inequalities for H-infinity control. The conditions thus obtained are also used to design an H-infinity state feedback controller. This design method is further extended to solve the design problem of robust H-infinity state feedback control. A numerical example demonstrates the validity of the method.
基金Project supported by the National Natural Science Foundation ofChina (Nos. 60074011 and 60174009), and Youth Science and Tech-nology Foundation of Shanxi Province (No. 20051020), China
文摘Network-induced delay and jitter are key factors causing performance degradation and instability of NCSs (networked control systems). The relationships between the sampling periods of the control loops, network-induced delay and jitter were studied aimed at token-type networks. A jitter-dependent optimal bandwidth scheduling algorithm for NCSs is proposed, which tries to achieve a tradeoff between bandwidth occupancy and system performance. Simulation tests proved the effectiveness of this optimal scheduling algorithm.
基金supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003)the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5)Beijing Natural Science Foundation (JQ19013)。
文摘Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
基金supported in part by the National Natural Science Foundation of China (62173182,61773212)the Intergovernmental International Science and Technology Innovation Cooperation Key Project of Chinese National Key R&D Program (2021YFE0102700)。
文摘This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Considering the model complexity and input deadzone,a fractional-order ultra-local model is proposed to formulate the original dynamic system for simple controller design.Firstly,the control gain of ultra-local model is considered as a constant.The fractional-order sliding mode technique is designed to stabilize the closed-loop system,while fractional-order time-delay estimation is combined with neural network to estimate the lumped disturbance.Correspondingly,a fractional-order ultra-local model-based neural network sliding mode controller(FO-NNSMC) is proposed.Secondly,to avoid disadvantageous effect of improper gain selection on the control performance,the control gain of ultra-local model is considered as an unknown parameter.Then,the Nussbaum technique is introduced into the FO-NNSMC to deal with the stability problem with unknown gain.Correspondingly,a fractional-order ultra-local model-based adaptive neural network sliding mode controller(FO-ANNSMC) is proposed.Moreover,the stability analysis of the closed-loop system with the proposed method is presented by using the Lyapunov theory.Finally,with the co-simulations on virtual prototype of 7-DOF iReHave upper-limb exoskeleton and experiments on 2-DOF upper-limb exoskeleton,the obtained compared results illustrate the effectiveness and superiority of the proposed method.
基金supported by the National Natural Science Foundation of China (62273201,62173209,72134004,62303170)the Research Fund for the Taishan Scholar Project of Shandong Province of China (TSTP20221103)。
文摘Set stabilization is one of the essential problems in engineering systems, and self-triggered control(STC) can save the storage space for interactive information, and can be successfully applied in networked control systems with limited communication resources. In this study, the set stabilization problem and STC design of Boolean control networks are investigated via the semi-tensor product technique. On the one hand, the largest control invariant subset is calculated in terms of the strongly connected components of the state transition graph, by which a graph-theoretical condition for set stabilization is derived. On the other hand, a characteristic function is exploited to determine the triggering mechanism and feasible controls. Based on this, the minimum-time and minimum-triggering open-loop, state-feedback and output-feedback STCs for set stabilization are designed,respectively. As classic applications of self-triggered set stabilization, self-triggered synchronization, self-triggered output tracking and self-triggered output regulation are discussed as well. Additionally, several practical examples are given to illustrate the effectiveness of theoretical results.
文摘With the rapid development of network technology and control technology,a networked multi-agent control system is a key direction of modern industrial control systems,such as industrial Internet systems.This paper studies the tracking control problem of networked multi-agent systems with communication constraints,where each agent has no information on the dynamics of other agents except their outputs.A networked predictive proportional integral derivative(PPID)tracking scheme is proposed to achieve the desired tracking performance,compensate actively for communication delays,and simplify implementation in a distributed manner.This scheme combines the past,present and predictive information of neighbour agents to form a tracking error signal for each agent,and applies the proportional,integral,and derivative of the agent tracking error signal to control each individual agent.The criteria of the stability and output tracking consensus of multi-agent systems with the networked PPID tracking scheme are derived through detailed analysis on the closed-loop systems.The effectiveness of the networked PPID tracking scheme is illustrated via an example.
基金supported by the National Natural Science Foundation of China (U1808205)Hebei Natural Science Foundation (F2000501005)。
文摘This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighted.The influence of inter-layer couplings on the target controllability of multi-layer networks is discussed.It is found that even if there exists a layer which is not target controllable,the entire multi-layer network can still be target controllable due to the inter-layer couplings.For the multi-layer networks with general structure,a necessary and sufficient condition for target controllability is given by establishing the relationship between uncontrollable subspace and output matrix.By the derived condition,it can be found that the system may be target controllable even if it is not state controllable.On this basis,two corollaries are derived,which clarify the relationship between target controllability,state controllability and output controllability.For the multi-layer networks where the inter-layer couplings are directed chains and directed stars,sufficient conditions for target controllability of networked systems are given,respectively.These conditions are easier to verify than the classic criterion.
基金supported by the National Natural Science Foundation of China(62273176)the Aeronautical Science Foundation of China(20200007018001)the China Scholarship Council(202306830096).
文摘In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.
基金Scientific Research Project of Liaoning Province Education Department,Code:LJKQZ20222457&LJKMZ20220781Liaoning Province Nature Fund Project,Code:No.2022-MS-291.
文摘As industrialization and informatization becomemore deeply intertwined,industrial control networks have entered an era of intelligence.The connection between industrial control networks and the external internet is becoming increasingly close,which leads to frequent security accidents.This paper proposes a model for the industrial control network.It includes a malware containment strategy that integrates intrusion detection,quarantine,and monitoring.Basedonthismodel,the role of keynodes in the spreadofmalware is studied,a comparisonexperiment is conducted to validate the impact of the containment strategy.In addition,the dynamic behavior of the model is analyzed,the basic reproduction number is computed,and the disease-free and endemic equilibrium of the model is also obtained by the basic reproduction number.Moreover,through simulation experiments,the effectiveness of the containment strategy is validated,the influence of the relevant parameters is analyzed,and the containment strategy is optimized.In otherwords,selective immunity to key nodes can effectively suppress the spread ofmalware andmaintain the stability of industrial control systems.The earlier the immunization of key nodes,the better.Once the time exceeds the threshold,immunizing key nodes is almost ineffective.The analysis provides a better way to contain the malware in the industrial control network.
文摘In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application.
基金Dean Research&Consultancy under Grant No.Dean (R&C)/2020-21/1155。
文摘This study presents a neural network-based model for predicting linear quadratic regulator(LQR)weighting matrices for achieving a target response reduction.Based on the expected weighting matrices,the LQR algorithm is used to determine the various responses of the structure.The responses are determined by numerically analyzing the governing equation of motion using the state-space approach.For training a neural network,four input parameters are considered:the time history of the ground motion,the percentage reduction in lateral displacement,lateral velocity,and lateral acceleration,Output parameters are LQR weighting matrices.To study the effectiveness of an LQR-based neural network(LQRNN),the actual percentage reduction in the responses obtained from using LQRNN is compared with the target percentage reductions.Furthermore,to investigate the efficacy of an active control system using LQRNN,the controlled responses of a system are compared to the corresponding uncontrolled responses.The trained neural network effectively predicts weighting parameters that can provide a percentage reduction in displacement,velocity,and acceleration close to the target percentage reduction.Based on the simulation study,it can be concluded that significant response reductions are observed in the active-controlled system using LQRNN.Moreover,the LQRNN algorithm can replace conventional LQR control with the use of an active control system.
文摘In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.
文摘The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.
基金National Natural Science Foundation of China(U2133208,U20A20161)National Natural Science Foundation of China(No.62273244)Sichuan Science and Technology Program(No.2022YFG0180).
文摘In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.