The advent of Industry 5.0 marks a transformative era where Cyber-Physical Systems(CPSs)seamlessly integrate physical processes with advanced digital technologies.However,as industries become increasingly interconnect...The advent of Industry 5.0 marks a transformative era where Cyber-Physical Systems(CPSs)seamlessly integrate physical processes with advanced digital technologies.However,as industries become increasingly interconnected and reliant on smart digital technologies,the intersection of physical and cyber domains introduces novel security considerations,endangering the entire industrial ecosystem.The transition towards a more cooperative setting,including humans and machines in Industry 5.0,together with the growing intricacy and interconnection of CPSs,presents distinct and diverse security and privacy challenges.In this regard,this study provides a comprehensive review of security and privacy concerns pertaining to CPSs in the context of Industry 5.0.The review commences by providing an outline of the role of CPSs in Industry 5.0 and then proceeds to conduct a thorough review of the different security risks associated with CPSs in the context of Industry 5.0.Afterward,the study also presents the privacy implications inherent in these systems,particularly in light of the massive data collection and processing required.In addition,the paper delineates potential avenues for future research and provides countermeasures to surmount these challenges.Overall,the study underscores the imperative of adopting comprehensive security and privacy strategies within the context of Industry 5.0.展开更多
Mobile networks possess significant information and thus are considered a gold mine for the researcher’s community.The call detail records(CDR)of a mobile network are used to identify the network’s efficacy and the ...Mobile networks possess significant information and thus are considered a gold mine for the researcher’s community.The call detail records(CDR)of a mobile network are used to identify the network’s efficacy and the mobile user’s behavior.It is evident from the recent literature that cyber-physical systems(CPS)were used in the analytics and modeling of telecom data.In addition,CPS is used to provide valuable services in smart cities.In general,a typical telecom company hasmillions of subscribers and thus generatesmassive amounts of data.From this aspect,data storage,analysis,and processing are the key concerns.To solve these issues,herein we propose a multilevel cyber-physical social system(CPSS)for the analysis and modeling of large internet data.Our proposed multilevel system has three levels and each level has a specific functionality.Initially,raw Call Detail Data(CDR)was collected at the first level.Herein,the data preprocessing,cleaning,and error removal operations were performed.In the second level,data processing,cleaning,reduction,integration,processing,and storage were performed.Herein,suggested internet activity record measures were applied.Our proposed system initially constructs a graph and then performs network analysis.Thus proposed CPSS system accurately identifies different areas of internet peak usage in a city(Milan city).Our research is helpful for the network operators to plan effective network configuration,management,and optimization of resources.展开更多
Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been ...Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
With the rapid development of network technology and control technology,a networked multi-agent control system is a key direction of modern industrial control systems,such as industrial Internet systems.This paper stu...With the rapid development of network technology and control technology,a networked multi-agent control system is a key direction of modern industrial control systems,such as industrial Internet systems.This paper studies the tracking control problem of networked multi-agent systems with communication constraints,where each agent has no information on the dynamics of other agents except their outputs.A networked predictive proportional integral derivative(PPID)tracking scheme is proposed to achieve the desired tracking performance,compensate actively for communication delays,and simplify implementation in a distributed manner.This scheme combines the past,present and predictive information of neighbour agents to form a tracking error signal for each agent,and applies the proportional,integral,and derivative of the agent tracking error signal to control each individual agent.The criteria of the stability and output tracking consensus of multi-agent systems with the networked PPID tracking scheme are derived through detailed analysis on the closed-loop systems.The effectiveness of the networked PPID tracking scheme is illustrated via an example.展开更多
This paper addresses the decentralized consensus problem for a system of multiple dynamic agents with remote controllers via networking,known as a networked control multi-agent system(NCMAS).It presents a challenging ...This paper addresses the decentralized consensus problem for a system of multiple dynamic agents with remote controllers via networking,known as a networked control multi-agent system(NCMAS).It presents a challenging scenario where partial dynamic entities or remote control units are vulnerable to disclosure attacks,making them potentially malicious.To tackle this issue,we propose a secure decentralized control design approach employing a double-layer cryptographic strategy.This approach not only ensures that the input and output information of the benign entities remains protected from the malicious entities but also practically achieves consensus performance.The paper provides an explicit design,supported by theoretical proof and numerical verification,covering stability,steady-state error,and the prevention of computation overflow or underflow.展开更多
This paper is concerned with the finite-time dissipative synchronization control problem of semi-Markov switched cyber-physical systems in the presence of packet losses, which is constructed by the Takagi–Sugeno fuzz...This paper is concerned with the finite-time dissipative synchronization control problem of semi-Markov switched cyber-physical systems in the presence of packet losses, which is constructed by the Takagi–Sugeno fuzzy model. To save the network communication burden, a distributed dynamic event-triggered mechanism is developed to restrain the information update. Besides, random packet dropouts following the Bernoulli distribution are assumed to occur in sensor to controller channels, where the triggered control input is analyzed via an equivalent method containing a new stochastic variable. By establishing the mode-dependent Lyapunov–Krasovskii functional with augmented terms, the finite-time boundness of the error system limited to strict dissipativity is studied. As a result of the help of an extended reciprocally convex matrix inequality technique, less conservative criteria in terms of linear matrix inequalities are deduced to calculate the desired control gains. Finally, two examples in regard to practical systems are provided to display the effectiveness of the proposed theory.展开更多
Cyber-Physical Systems are very vulnerable to sparse sensor attacks.But current protection mechanisms employ linear and deterministic models which cannot detect attacks precisely.Therefore,in this paper,we propose a n...Cyber-Physical Systems are very vulnerable to sparse sensor attacks.But current protection mechanisms employ linear and deterministic models which cannot detect attacks precisely.Therefore,in this paper,we propose a new non-linear generalized model to describe Cyber-Physical Systems.This model includes unknown multivariable discrete and continuous-time functions and different multiplicative noises to represent the evolution of physical processes and randomeffects in the physical and computationalworlds.Besides,the digitalization stage in hardware devices is represented too.Attackers and most critical sparse sensor attacks are described through a stochastic process.The reconstruction and protectionmechanisms are based on aweighted stochasticmodel.Error probability in data samples is estimated through different indicators commonly employed in non-linear dynamics(such as the Fourier transform,first-return maps,or the probability density function).A decision algorithm calculates the final reconstructed value considering the previous error probability.An experimental validation based on simulation tools and real deployments is also carried out.Both,the new technology performance and scalability are studied.Results prove that the proposed solution protects Cyber-Physical Systems against up to 92%of attacks and perturbations,with a computational delay below 2.5 s.The proposed model shows a linear complexity,as recursive or iterative structures are not employed,just algebraic and probabilistic functions.In conclusion,the new model and reconstructionmechanism can protect successfully Cyber-Physical Systems against sparse sensor attacks,even in dense or pervasive deployments and scenarios.展开更多
Cyber-physical system(CPS)is a concept that integrates every computer-driven system interacting closely with its physical environment.Internet-of-things(IoT)is a union of devices and technologies that provide universa...Cyber-physical system(CPS)is a concept that integrates every computer-driven system interacting closely with its physical environment.Internet-of-things(IoT)is a union of devices and technologies that provide universal interconnection mechanisms between the physical and digital worlds.Since the complexity level of the CPS increases,an adversary attack becomes possible in several ways.Assuring security is a vital aspect of the CPS environment.Due to the massive surge in the data size,the design of anomaly detection techniques becomes a challenging issue,and domain-specific knowledge can be applied to resolve it.This article develops an Aquila Optimizer with Parameter Tuned Machine Learning Based Anomaly Detection(AOPTML-AD)technique in the CPS environment.The presented AOPTML-AD model intends to recognize and detect abnormal behaviour in the CPS environment.The presented AOPTML-AD framework initially pre-processes the network data by converting them into a compatible format.Besides,the improved Aquila optimization algorithm-based feature selection(IAOA-FS)algorithm is designed to choose an optimal feature subset.Along with that,the chimp optimization algorithm(ChOA)with an adaptive neuro-fuzzy inference system(ANFIS)model can be employed to recognise anomalies in the CPS environment.The ChOA is applied for optimal adjusting of the membership function(MF)indulged in the ANFIS method.The performance validation of the AOPTML-AD algorithm is carried out using the benchmark dataset.The extensive comparative study reported the better performance of the AOPTML-AD technique compared to recent models,with an accuracy of 99.37%.展开更多
This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-trigger...This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-triggered strategy.Due to the fact that only integers can work in the Pailler cryptosystem,both the real-valued control gain and system state need to be first quantized before encryption.This is dramatically different from the existing quantized control methods,where only the quantization of a single value,e.g.,the control input or the system state,is considered.To handle this issue,static and dynamic quantization policies are presented,which achieve the desired integer conversions and guarantee asymptotic convergence of the quantized system state to the equilibrium.Then,the quantized system state is encrypted and sent to the controller when the triggering condition,specified by a state-based event-triggered strategy,is satisfied.By doing so,not only the security and confidentiality of data transmitted over the communication network are protected,but also the ciphertext expansion phenomenon can be relieved.Additionally,by tactfully designing the quantization sensitivities and triggering error,the proposed event-driven encrypted control framework ensures the asymptotic stability of the overall closedloop system.Finally,a simulation example of the secure motion control for an inverted pendulum cart system is presented to evaluate the effectiveness of the theoretical results.展开更多
The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is...The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.展开更多
COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus.The foremost and most prime sector among those affected were schools,colleges,and universities.The education system of en...COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus.The foremost and most prime sector among those affected were schools,colleges,and universities.The education system of entire nations had shifted to online education during this time.Many shortcomings of Learning Management Systems(LMSs)were detected to support education in an online mode that spawned the research in Artificial Intelligence(AI)based tools that are being developed by the research community to improve the effectiveness of LMSs.This paper presents a detailed survey of the different enhancements to LMSs,which are led by key advances in the area of AI to enhance the real-time and non-real-time user experience.The AI-based enhancements proposed to the LMSs start from the Application layer and Presentation layer in the form of flipped classroom models for the efficient learning environment and appropriately designed UI/UX for efficient utilization of LMS utilities and resources,including AI-based chatbots.Session layer enhancements are also required,such as AI-based online proctoring and user authentication using Biometrics.These extend to the Transport layer to support real-time and rate adaptive encrypted video transmission for user security/privacy and satisfactory working of AI-algorithms.It also needs the support of the Networking layer for IP-based geolocation features,the Virtual Private Network(VPN)feature,and the support of Software-Defined Networks(SDN)for optimum Quality of Service(QoS).Finally,in addition to these,non-real-time user experience is enhanced by other AI-based enhancements such as Plagiarism detection algorithms and Data Analytics.展开更多
Based on the complex network theory,this paper studies the systemic financial risks in China’s financial market.According to the industry classification of the China Securities Regulatory Commission in 2012,the daily...Based on the complex network theory,this paper studies the systemic financial risks in China’s financial market.According to the industry classification of the China Securities Regulatory Commission in 2012,the daily closing prices of 45 listed financial institutions are collected and the daily return rates of each financial institution are measured according to the logarithmic return rate calculation formula.In this paper,the risk spillover value ΔCoVaR is used to measure the contribution degree of each financial institution to systemic risk.Finally,the relationship between the risk spillover valueΔCoVaR and the node topology index of the risk transmission network is investigated by using a regression model,and some policy suggestions are put forward based on the regression results.展开更多
The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The ...The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations.展开更多
This paper aims to introduce the novel concept of neutrosophic crisp soft set(NCSS),including various types of neutrosophic crisp soft sets(NCSSs)and their fundamental operations.We define NCS-mapping and its inverse ...This paper aims to introduce the novel concept of neutrosophic crisp soft set(NCSS),including various types of neutrosophic crisp soft sets(NCSSs)and their fundamental operations.We define NCS-mapping and its inverse NCS-mapping between two NCS-classes.We develop a robust mathematical modeling with the help of NCS-mapping to analyze the emerging trends in social networking systems(SNSs)for our various generations.We investigate the advantages,disadvantages,and natural aspects of SNSs for five generations.With the changing of the generations,it is analyzed that emerging trends and the benefits of SNSs are increasing day by day.The suggested modeling with NCS-mapping is applicable in solving various decision-making problems.展开更多
The guaranteed cost control problem for networked control systems (NCSs) is addressed under communication constraints and varying sampling rate. First of all, a simple information-scheduling scheme is presented to des...The guaranteed cost control problem for networked control systems (NCSs) is addressed under communication constraints and varying sampling rate. First of all, a simple information-scheduling scheme is presented to describe the scheduling approach of system signals in NCSs. Then, based on such a scheme and given sampling method, the design procedure in dynamic output feedback manner is also derived which renders the closed loop system to be asymptotically stable and guarantees an upper bound of the LQ performance cost function.展开更多
Networked control systems are spatially distributed systems in which the communication between sensors, actuators,and controllers occurs through a shared band-limited digital communication network. Several advantages ...Networked control systems are spatially distributed systems in which the communication between sensors, actuators,and controllers occurs through a shared band-limited digital communication network. Several advantages of the network architectures include reduced system wiring, plug and play devices,increased system agility, and ease of system diagnosis and maintenance. Consequently, networked control is the current trend for industrial automation and has ever-increasing applications in a wide range of areas, such as smart grids, manufacturing systems,process control, automobiles, automated highway systems, and unmanned aerial vehicles. The modelling, analysis, and control of networked control systems have received considerable attention in the last two decades. The ‘control over networks’ is one of the key research directions for networked control systems. This paper aims at presenting a survey of trends and techniques in networked control systems from the perspective of ‘control over networks’, providing a snapshot of five control issues: sampled-data control, quantization control, networked control, event-triggered control, and security control. Some challenging issues are suggested to direct the future research.展开更多
Abstract--This paper provides a survey on modeling and theories of networked control systems (NCS). In the first part, modeling of the different types of imperfections that affect NCS is discussed. These imperfectio...Abstract--This paper provides a survey on modeling and theories of networked control systems (NCS). In the first part, modeling of the different types of imperfections that affect NCS is discussed. These imperfections are quantization errors, packet dropouts, variable sampling/transmission intervals, vari- able transmission delays, and communication constraints. Then follows in the second part a presentation of several theories that have been applied for controlling networked systems. These theories include: input delay system approach, Markovian system approach, switched system approach, stochastic system approach, impulsive system approach, and predictive control approach. In the last part, some advanced issues in NCS including decentral- ized and distributed NCS, cloud control system, and co-design of NCS are reviewed. Index Terms--Decentralized networked control systems (NCS), distributed networked control systems, network constraints, net- worked control system, quantization, time delays.展开更多
文摘The advent of Industry 5.0 marks a transformative era where Cyber-Physical Systems(CPSs)seamlessly integrate physical processes with advanced digital technologies.However,as industries become increasingly interconnected and reliant on smart digital technologies,the intersection of physical and cyber domains introduces novel security considerations,endangering the entire industrial ecosystem.The transition towards a more cooperative setting,including humans and machines in Industry 5.0,together with the growing intricacy and interconnection of CPSs,presents distinct and diverse security and privacy challenges.In this regard,this study provides a comprehensive review of security and privacy concerns pertaining to CPSs in the context of Industry 5.0.The review commences by providing an outline of the role of CPSs in Industry 5.0 and then proceeds to conduct a thorough review of the different security risks associated with CPSs in the context of Industry 5.0.Afterward,the study also presents the privacy implications inherent in these systems,particularly in light of the massive data collection and processing required.In addition,the paper delineates potential avenues for future research and provides countermeasures to surmount these challenges.Overall,the study underscores the imperative of adopting comprehensive security and privacy strategies within the context of Industry 5.0.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2021R1A6A1A03039493).
文摘Mobile networks possess significant information and thus are considered a gold mine for the researcher’s community.The call detail records(CDR)of a mobile network are used to identify the network’s efficacy and the mobile user’s behavior.It is evident from the recent literature that cyber-physical systems(CPS)were used in the analytics and modeling of telecom data.In addition,CPS is used to provide valuable services in smart cities.In general,a typical telecom company hasmillions of subscribers and thus generatesmassive amounts of data.From this aspect,data storage,analysis,and processing are the key concerns.To solve these issues,herein we propose a multilevel cyber-physical social system(CPSS)for the analysis and modeling of large internet data.Our proposed multilevel system has three levels and each level has a specific functionality.Initially,raw Call Detail Data(CDR)was collected at the first level.Herein,the data preprocessing,cleaning,and error removal operations were performed.In the second level,data processing,cleaning,reduction,integration,processing,and storage were performed.Herein,suggested internet activity record measures were applied.Our proposed system initially constructs a graph and then performs network analysis.Thus proposed CPSS system accurately identifies different areas of internet peak usage in a city(Milan city).Our research is helpful for the network operators to plan effective network configuration,management,and optimization of resources.
基金This work was supported by the Kyonggi University Research Grant 2022.
文摘Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
文摘With the rapid development of network technology and control technology,a networked multi-agent control system is a key direction of modern industrial control systems,such as industrial Internet systems.This paper studies the tracking control problem of networked multi-agent systems with communication constraints,where each agent has no information on the dynamics of other agents except their outputs.A networked predictive proportional integral derivative(PPID)tracking scheme is proposed to achieve the desired tracking performance,compensate actively for communication delays,and simplify implementation in a distributed manner.This scheme combines the past,present and predictive information of neighbour agents to form a tracking error signal for each agent,and applies the proportional,integral,and derivative of the agent tracking error signal to control each individual agent.The criteria of the stability and output tracking consensus of multi-agent systems with the networked PPID tracking scheme are derived through detailed analysis on the closed-loop systems.The effectiveness of the networked PPID tracking scheme is illustrated via an example.
文摘This paper addresses the decentralized consensus problem for a system of multiple dynamic agents with remote controllers via networking,known as a networked control multi-agent system(NCMAS).It presents a challenging scenario where partial dynamic entities or remote control units are vulnerable to disclosure attacks,making them potentially malicious.To tackle this issue,we propose a secure decentralized control design approach employing a double-layer cryptographic strategy.This approach not only ensures that the input and output information of the benign entities remains protected from the malicious entities but also practically achieves consensus performance.The paper provides an explicit design,supported by theoretical proof and numerical verification,covering stability,steady-state error,and the prevention of computation overflow or underflow.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62263005)Guangxi Natural Science Foundation (Grant No. 2020GXNSFDA238029)+2 种基金Laboratory of AI and Information Processing (Hechi University), Education Department of Guangxi Zhuang Autonomous Region (Grant No. 2022GXZDSY004)Innovation Project of Guangxi Graduate Education (Grant No. YCSW2023298)Innovation Project of GUET Graduate Education (Grant Nos. 2022YCXS149 and 2022YCXS155)。
文摘This paper is concerned with the finite-time dissipative synchronization control problem of semi-Markov switched cyber-physical systems in the presence of packet losses, which is constructed by the Takagi–Sugeno fuzzy model. To save the network communication burden, a distributed dynamic event-triggered mechanism is developed to restrain the information update. Besides, random packet dropouts following the Bernoulli distribution are assumed to occur in sensor to controller channels, where the triggered control input is analyzed via an equivalent method containing a new stochastic variable. By establishing the mode-dependent Lyapunov–Krasovskii functional with augmented terms, the finite-time boundness of the error system limited to strict dissipativity is studied. As a result of the help of an extended reciprocally convex matrix inequality technique, less conservative criteria in terms of linear matrix inequalities are deduced to calculate the desired control gains. Finally, two examples in regard to practical systems are provided to display the effectiveness of the proposed theory.
基金supported by Comunidad de Madrid within the framework of the Multiannual Agreement with Universidad Politécnica de Madrid to encourage research by young doctors(PRINCE).
文摘Cyber-Physical Systems are very vulnerable to sparse sensor attacks.But current protection mechanisms employ linear and deterministic models which cannot detect attacks precisely.Therefore,in this paper,we propose a new non-linear generalized model to describe Cyber-Physical Systems.This model includes unknown multivariable discrete and continuous-time functions and different multiplicative noises to represent the evolution of physical processes and randomeffects in the physical and computationalworlds.Besides,the digitalization stage in hardware devices is represented too.Attackers and most critical sparse sensor attacks are described through a stochastic process.The reconstruction and protectionmechanisms are based on aweighted stochasticmodel.Error probability in data samples is estimated through different indicators commonly employed in non-linear dynamics(such as the Fourier transform,first-return maps,or the probability density function).A decision algorithm calculates the final reconstructed value considering the previous error probability.An experimental validation based on simulation tools and real deployments is also carried out.Both,the new technology performance and scalability are studied.Results prove that the proposed solution protects Cyber-Physical Systems against up to 92%of attacks and perturbations,with a computational delay below 2.5 s.The proposed model shows a linear complexity,as recursive or iterative structures are not employed,just algebraic and probabilistic functions.In conclusion,the new model and reconstructionmechanism can protect successfully Cyber-Physical Systems against sparse sensor attacks,even in dense or pervasive deployments and scenarios.
文摘Cyber-physical system(CPS)is a concept that integrates every computer-driven system interacting closely with its physical environment.Internet-of-things(IoT)is a union of devices and technologies that provide universal interconnection mechanisms between the physical and digital worlds.Since the complexity level of the CPS increases,an adversary attack becomes possible in several ways.Assuring security is a vital aspect of the CPS environment.Due to the massive surge in the data size,the design of anomaly detection techniques becomes a challenging issue,and domain-specific knowledge can be applied to resolve it.This article develops an Aquila Optimizer with Parameter Tuned Machine Learning Based Anomaly Detection(AOPTML-AD)technique in the CPS environment.The presented AOPTML-AD model intends to recognize and detect abnormal behaviour in the CPS environment.The presented AOPTML-AD framework initially pre-processes the network data by converting them into a compatible format.Besides,the improved Aquila optimization algorithm-based feature selection(IAOA-FS)algorithm is designed to choose an optimal feature subset.Along with that,the chimp optimization algorithm(ChOA)with an adaptive neuro-fuzzy inference system(ANFIS)model can be employed to recognise anomalies in the CPS environment.The ChOA is applied for optimal adjusting of the membership function(MF)indulged in the ANFIS method.The performance validation of the AOPTML-AD algorithm is carried out using the benchmark dataset.The extensive comparative study reported the better performance of the AOPTML-AD technique compared to recent models,with an accuracy of 99.37%.
基金supported by National Natural Science Foundation of China(61304263,61233007)the Cross-disciplinary Collaborative Teams Program for Science,Technology and Innovation of Chinese Academy of Sciences-Network and System Technologies for Security Monitoring and Information Interaction in Smart Arid
基金supported by National Natural Science Foundation of China(61233004,61221003,61374109,61104091,61304078,61473184)National Basic Research Program of China(973 Program)(2013CB035500)+2 种基金the International Cooperation Program of Shanghai Science and Technology Commission(12230709600)the Higher Education Research Fund for the Doctoral Program of China(20120073130006,20110073110018)the China Postdoctoral Science Foundation(2013M540364)
基金the Research Grants Council of Hong Kong(CityU 21208921)the Chow Sang Sang Group Research Fund Sponsored by Chow Sang Sang Holdings International Ltd.
文摘This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-triggered strategy.Due to the fact that only integers can work in the Pailler cryptosystem,both the real-valued control gain and system state need to be first quantized before encryption.This is dramatically different from the existing quantized control methods,where only the quantization of a single value,e.g.,the control input or the system state,is considered.To handle this issue,static and dynamic quantization policies are presented,which achieve the desired integer conversions and guarantee asymptotic convergence of the quantized system state to the equilibrium.Then,the quantized system state is encrypted and sent to the controller when the triggering condition,specified by a state-based event-triggered strategy,is satisfied.By doing so,not only the security and confidentiality of data transmitted over the communication network are protected,but also the ciphertext expansion phenomenon can be relieved.Additionally,by tactfully designing the quantization sensitivities and triggering error,the proposed event-driven encrypted control framework ensures the asymptotic stability of the overall closedloop system.Finally,a simulation example of the secure motion control for an inverted pendulum cart system is presented to evaluate the effectiveness of the theoretical results.
文摘The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.
文摘COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus.The foremost and most prime sector among those affected were schools,colleges,and universities.The education system of entire nations had shifted to online education during this time.Many shortcomings of Learning Management Systems(LMSs)were detected to support education in an online mode that spawned the research in Artificial Intelligence(AI)based tools that are being developed by the research community to improve the effectiveness of LMSs.This paper presents a detailed survey of the different enhancements to LMSs,which are led by key advances in the area of AI to enhance the real-time and non-real-time user experience.The AI-based enhancements proposed to the LMSs start from the Application layer and Presentation layer in the form of flipped classroom models for the efficient learning environment and appropriately designed UI/UX for efficient utilization of LMS utilities and resources,including AI-based chatbots.Session layer enhancements are also required,such as AI-based online proctoring and user authentication using Biometrics.These extend to the Transport layer to support real-time and rate adaptive encrypted video transmission for user security/privacy and satisfactory working of AI-algorithms.It also needs the support of the Networking layer for IP-based geolocation features,the Virtual Private Network(VPN)feature,and the support of Software-Defined Networks(SDN)for optimum Quality of Service(QoS).Finally,in addition to these,non-real-time user experience is enhanced by other AI-based enhancements such as Plagiarism detection algorithms and Data Analytics.
文摘Based on the complex network theory,this paper studies the systemic financial risks in China’s financial market.According to the industry classification of the China Securities Regulatory Commission in 2012,the daily closing prices of 45 listed financial institutions are collected and the daily return rates of each financial institution are measured according to the logarithmic return rate calculation formula.In this paper,the risk spillover value ΔCoVaR is used to measure the contribution degree of each financial institution to systemic risk.Finally,the relationship between the risk spillover valueΔCoVaR and the node topology index of the risk transmission network is investigated by using a regression model,and some policy suggestions are put forward based on the regression results.
文摘The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations.
基金the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under Grant No.R.G.P.2/181/44.
文摘This paper aims to introduce the novel concept of neutrosophic crisp soft set(NCSS),including various types of neutrosophic crisp soft sets(NCSSs)and their fundamental operations.We define NCS-mapping and its inverse NCS-mapping between two NCS-classes.We develop a robust mathematical modeling with the help of NCS-mapping to analyze the emerging trends in social networking systems(SNSs)for our various generations.We investigate the advantages,disadvantages,and natural aspects of SNSs for five generations.With the changing of the generations,it is analyzed that emerging trends and the benefits of SNSs are increasing day by day.The suggested modeling with NCS-mapping is applicable in solving various decision-making problems.
基金This work was supported by the National Natural Science Foundation of China (No.60274014)Specialized+1 种基金Research Fund for the Doctoral Program of Higher Education (No. 20020487006)China Education Ministry' s Key Laboratory Foundation for Intelligent Ma
文摘The guaranteed cost control problem for networked control systems (NCSs) is addressed under communication constraints and varying sampling rate. First of all, a simple information-scheduling scheme is presented to describe the scheduling approach of system signals in NCSs. Then, based on such a scheme and given sampling method, the design procedure in dynamic output feedback manner is also derived which renders the closed loop system to be asymptotically stable and guarantees an upper bound of the LQ performance cost function.
基金supported in part by the Australian Research Council Discovery Project(DP160103567)
文摘Networked control systems are spatially distributed systems in which the communication between sensors, actuators,and controllers occurs through a shared band-limited digital communication network. Several advantages of the network architectures include reduced system wiring, plug and play devices,increased system agility, and ease of system diagnosis and maintenance. Consequently, networked control is the current trend for industrial automation and has ever-increasing applications in a wide range of areas, such as smart grids, manufacturing systems,process control, automobiles, automated highway systems, and unmanned aerial vehicles. The modelling, analysis, and control of networked control systems have received considerable attention in the last two decades. The ‘control over networks’ is one of the key research directions for networked control systems. This paper aims at presenting a survey of trends and techniques in networked control systems from the perspective of ‘control over networks’, providing a snapshot of five control issues: sampled-data control, quantization control, networked control, event-triggered control, and security control. Some challenging issues are suggested to direct the future research.
基金supported by the Deanship of Scientific Research(DSR) at KFUPM through Research Project(IN141048)
文摘Abstract--This paper provides a survey on modeling and theories of networked control systems (NCS). In the first part, modeling of the different types of imperfections that affect NCS is discussed. These imperfections are quantization errors, packet dropouts, variable sampling/transmission intervals, vari- able transmission delays, and communication constraints. Then follows in the second part a presentation of several theories that have been applied for controlling networked systems. These theories include: input delay system approach, Markovian system approach, switched system approach, stochastic system approach, impulsive system approach, and predictive control approach. In the last part, some advanced issues in NCS including decentral- ized and distributed NCS, cloud control system, and co-design of NCS are reviewed. Index Terms--Decentralized networked control systems (NCS), distributed networked control systems, network constraints, net- worked control system, quantization, time delays.