Using the semi-tensor product method, this paper investigates the modeling and analysis of networked evolutionary games(NEGs) with finite memories, and presents a number of new results. Firstly, a kind of algebraic ex...Using the semi-tensor product method, this paper investigates the modeling and analysis of networked evolutionary games(NEGs) with finite memories, and presents a number of new results. Firstly, a kind of algebraic expression is formulated for the networked evolutionary games with finite memories, based on which the behavior of the corresponding evolutionary game is analyzed. Secondly, under a proper assumption, the existence of Nash equilibrium of the given networked evolutionary games is proved and a free-type strategy sequence is designed for the convergence to the Nash equilibrium. Finally, an illustrative example is worked out to support the obtained new results.展开更多
This paper investigates the networked evolutionary games(NEGs)with profile-dependent delays,including modeling and stability analysis.Profile-dependent delay,which varies with the game profiles,slows the information t...This paper investigates the networked evolutionary games(NEGs)with profile-dependent delays,including modeling and stability analysis.Profile-dependent delay,which varies with the game profiles,slows the information transmission between participants.Firstly,the dynamics model is proposed for the profile-dependent delayed NEG,then the algebraic formulation is established using the algebraic state space approach.Secondly,the dynamic behavior of the game is discussed,involving general stability and evolutionarily stable profile analysis.Necessary and sufficient criteria are derived using the matrices,which can be easily verified by mathematical software.Finally,a numerical example is carried out to demonstrate the validity of the theoretical results.展开更多
In this paper a comprehensive introduction for modeling and control of networked evolutionary games (NEGs) via semi-tensor product (STP) approach is presented. First, we review the mathematical model of an NEG, wh...In this paper a comprehensive introduction for modeling and control of networked evolutionary games (NEGs) via semi-tensor product (STP) approach is presented. First, we review the mathematical model of an NEG, which consists of three ingredients: network graph, fundamental network game, and strategy updating rule. Three kinds of network graphs are considered, which are i) undirected graph for symmetric games; ii) directed graph for asymmetric games, and iii) d-directed graph for symmetric games with partial neighborhood information. Three kinds of fundamental evolutionary games (FEGs) are discussed, which are i) two strategies and symmetric (S-2); ii) two strategies and asymmetric (A-2); and iii) three strategies and symmetric (S-3). Three strategy updating rules (SUR) are introduced, which are i) Unconditional Imitation (UI); ii) Fermi Rule(FR); iii) Myopic Best Response Adjustment Rule (MBRA). First, we review the fundamental evolutionary equation (FEE) and use it to construct network profile dynamics (NPD)of NEGs. To show how the dynamics of an NEG can be modeled as a discrete time dynamics within an algebraic state space, the fundamental evolutionary equation (FEE) of each player is discussed. Using FEEs, the network strategy profile dynamics (NSPD) is built by providing efficient algorithms. Finally, we consider three more complicated NEGs: i) NEG with different length historical information, ii) NEG with multi-species, and iii) NEG with time-varying payoffs. In all the cases, formulas are provided to construct the corresponding NSPDs. Using these NSPDs, certain properties are explored. Examples are presented to demonstrate the model constructing method, analysis and control design technique, and to reveal certain dynamic behaviors of NEGs.展开更多
This paper considers the modeling and convergence of hyper-networked evolutionary games (HNEGs). In an HNEG the network graph is a hypergraph, which allows the fundamental network game to be a multi-player one. Usin...This paper considers the modeling and convergence of hyper-networked evolutionary games (HNEGs). In an HNEG the network graph is a hypergraph, which allows the fundamental network game to be a multi-player one. Using semi-tensor product of matrices and the fundamental evolutionary equation, the dynamics of an HNEG is obtained and we extend the results about the networked evolutionary games to show whether an HNEG is potential and how to calculate the potential. Then we propose a new strategy updating rule, called the cascading myopic best response adjustment rule (MBRAR), and prove that under the cascading MBRAR the strategies of an HNEG will converge to a pure Nash equilibrium. An example is presented and discussed in detail to demonstrate the theoretical and numerical results.展开更多
We study evolutionary games in two-layer networks by introducing the correlation between two layers through the C-dominance or the D-dominance. We assume that individuals play prisoner's dilemma game (PDG) in one l...We study evolutionary games in two-layer networks by introducing the correlation between two layers through the C-dominance or the D-dominance. We assume that individuals play prisoner's dilemma game (PDG) in one layer and snowdrift game (SDG) in the other. We explore the dependences of the fraction of the strategy cooperation in different layers on the game parameter and initial conditions. The results on two-layer square lattices show that, when cooperation is the dominant strategy, initial conditions strongly influence cooperation in the PDG layer while have no impact in the SDG layer. Moreover, in contrast to the result for PDG in single-layer square lattices, the parameter regime where cooperation could be maintained expands significantly in the PDG layer. We also investigate the effects of mutation and network topology. We find that different mutation rates do not change the cooperation behaviors. Moreover, similar behaviors on cooperation could be found in two-layer random networks.展开更多
Basic concepts about the finite potential games and the networked evolutionary games(NEGs)are introduced.Some new developments are surveyed,including(i)formulas for verifying whether a finite game is(weighted)potentia...Basic concepts about the finite potential games and the networked evolutionary games(NEGs)are introduced.Some new developments are surveyed,including(i)formulas for verifying whether a finite game is(weighted)potential and for calculating the(weighted)potential function;and(ii)the fundamental network equation and strategy profile dynamics of NEGs.Then some applications are introduced,which include:(i)convergence of NEGs;(ii)congestion control;(iii)distributed coverage of graphs.展开更多
This paper investigates the set stability of probabilistic time-delay Boolean networks(PTDBN)with impulsive effect.Firstly,using the algebraic state space representation,an equivalent stochastic system is established ...This paper investigates the set stability of probabilistic time-delay Boolean networks(PTDBN)with impulsive effect.Firstly,using the algebraic state space representation,an equivalent stochastic system is established for PTDBN with impulsive effect.Then,based on the probabilistic state transition matrix,a necessary and sufficient condition is presented for the set stability of PTDBN with impulsive effect.Finally,the obtained new result is applied to the networked evolutionary game with memories.展开更多
基金supported by the National Natural Science Foundation of China(61503225)the Natural Science Foundation of Shandong Province(ZR2015FQ003,ZR201709260273)
文摘Using the semi-tensor product method, this paper investigates the modeling and analysis of networked evolutionary games(NEGs) with finite memories, and presents a number of new results. Firstly, a kind of algebraic expression is formulated for the networked evolutionary games with finite memories, based on which the behavior of the corresponding evolutionary game is analyzed. Secondly, under a proper assumption, the existence of Nash equilibrium of the given networked evolutionary games is proved and a free-type strategy sequence is designed for the convergence to the Nash equilibrium. Finally, an illustrative example is worked out to support the obtained new results.
基金supported by the National Natural Science Foundation of China under Grant Nos.62273201 and 62103232the research fund for the Taishan Scholar Project of Shandong Province of China under Grant No.tstp20221103the Natural Science Foundation of Shandong Province under Grant No.ZR2021QF005。
文摘This paper investigates the networked evolutionary games(NEGs)with profile-dependent delays,including modeling and stability analysis.Profile-dependent delay,which varies with the game profiles,slows the information transmission between participants.Firstly,the dynamics model is proposed for the profile-dependent delayed NEG,then the algebraic formulation is established using the algebraic state space approach.Secondly,the dynamic behavior of the game is discussed,involving general stability and evolutionarily stable profile analysis.Necessary and sufficient criteria are derived using the matrices,which can be easily verified by mathematical software.Finally,a numerical example is carried out to demonstrate the validity of the theoretical results.
基金This work was partially supported by National Natural Science Foundation of China (Nos. 61273013, 61333001, 61104065, 61322307).
文摘In this paper a comprehensive introduction for modeling and control of networked evolutionary games (NEGs) via semi-tensor product (STP) approach is presented. First, we review the mathematical model of an NEG, which consists of three ingredients: network graph, fundamental network game, and strategy updating rule. Three kinds of network graphs are considered, which are i) undirected graph for symmetric games; ii) directed graph for asymmetric games, and iii) d-directed graph for symmetric games with partial neighborhood information. Three kinds of fundamental evolutionary games (FEGs) are discussed, which are i) two strategies and symmetric (S-2); ii) two strategies and asymmetric (A-2); and iii) three strategies and symmetric (S-3). Three strategy updating rules (SUR) are introduced, which are i) Unconditional Imitation (UI); ii) Fermi Rule(FR); iii) Myopic Best Response Adjustment Rule (MBRA). First, we review the fundamental evolutionary equation (FEE) and use it to construct network profile dynamics (NPD)of NEGs. To show how the dynamics of an NEG can be modeled as a discrete time dynamics within an algebraic state space, the fundamental evolutionary equation (FEE) of each player is discussed. Using FEEs, the network strategy profile dynamics (NSPD) is built by providing efficient algorithms. Finally, we consider three more complicated NEGs: i) NEG with different length historical information, ii) NEG with multi-species, and iii) NEG with time-varying payoffs. In all the cases, formulas are provided to construct the corresponding NSPDs. Using these NSPDs, certain properties are explored. Examples are presented to demonstrate the model constructing method, analysis and control design technique, and to reveal certain dynamic behaviors of NEGs.
基金supported partly by National Natural Science Foundation of China(Nos.61074114 and 61273013)
文摘This paper considers the modeling and convergence of hyper-networked evolutionary games (HNEGs). In an HNEG the network graph is a hypergraph, which allows the fundamental network game to be a multi-player one. Using semi-tensor product of matrices and the fundamental evolutionary equation, the dynamics of an HNEG is obtained and we extend the results about the networked evolutionary games to show whether an HNEG is potential and how to calculate the potential. Then we propose a new strategy updating rule, called the cascading myopic best response adjustment rule (MBRAR), and prove that under the cascading MBRAR the strategies of an HNEG will converge to a pure Nash equilibrium. An example is presented and discussed in detail to demonstrate the theoretical and numerical results.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11575036,71301012,and 11505016
文摘We study evolutionary games in two-layer networks by introducing the correlation between two layers through the C-dominance or the D-dominance. We assume that individuals play prisoner's dilemma game (PDG) in one layer and snowdrift game (SDG) in the other. We explore the dependences of the fraction of the strategy cooperation in different layers on the game parameter and initial conditions. The results on two-layer square lattices show that, when cooperation is the dominant strategy, initial conditions strongly influence cooperation in the PDG layer while have no impact in the SDG layer. Moreover, in contrast to the result for PDG in single-layer square lattices, the parameter regime where cooperation could be maintained expands significantly in the PDG layer. We also investigate the effects of mutation and network topology. We find that different mutation rates do not change the cooperation behaviors. Moreover, similar behaviors on cooperation could be found in two-layer random networks.
基金supported partly by National Natural Science Foundation(NNSF)of China,[grant numbers 61273013 and 61333001].
文摘Basic concepts about the finite potential games and the networked evolutionary games(NEGs)are introduced.Some new developments are surveyed,including(i)formulas for verifying whether a finite game is(weighted)potential and for calculating the(weighted)potential function;and(ii)the fundamental network equation and strategy profile dynamics of NEGs.Then some applications are introduced,which include:(i)convergence of NEGs;(ii)congestion control;(iii)distributed coverage of graphs.
基金supported by the National Natural Science Foundation of China under Grant No.71371186。
文摘This paper investigates the set stability of probabilistic time-delay Boolean networks(PTDBN)with impulsive effect.Firstly,using the algebraic state space representation,an equivalent stochastic system is established for PTDBN with impulsive effect.Then,based on the probabilistic state transition matrix,a necessary and sufficient condition is presented for the set stability of PTDBN with impulsive effect.Finally,the obtained new result is applied to the networked evolutionary game with memories.