In order to make the information transmission more efficient and reliable in a digital communication channel with limited capacity, various encoding-decoding techniques have been proposed and widely applied in many br...In order to make the information transmission more efficient and reliable in a digital communication channel with limited capacity, various encoding-decoding techniques have been proposed and widely applied in many branches of the signal processing including digital communications, data compression,information encryption, etc. Recently, due to its promising application potentials in the networked systems(NSs), the analysis and synthesis issues of the NSs under various encoding-decoding schemes have stirred some research attention. However, because of the network-enhanced complexity caused by the limited network resources, it poses new challenges to the design of suitable encoding-decoding procedures to meet certain control or filtering performance for the NSs. In this survey paper, our aim is to present a comprehensive review of the encoding-decodingbased control and filtering problems for different types of NSs.First, some basic introduction with respect to the coding-decoding mechanism is presented in terms of its engineering insights,specific properties and theoretical formulations. Then, the recent representative research progress in the design of the encodingdecoding protocols for various control and filtering problems is discussed. Some possible further research topics are finally outlined for the encoding-decoding-based NSs.展开更多
This paper deals with the robust control problem for a class of uncertain nonlinear networked systems with stochastic communication delays via sliding mode conception (SMC). A sequence of variables obeying Bernoulli...This paper deals with the robust control problem for a class of uncertain nonlinear networked systems with stochastic communication delays via sliding mode conception (SMC). A sequence of variables obeying Bernoulli distribution are employed to model the randomly occurring communication delays which could be different for different state variables. A discrete switching function that is different from those in the existing literature is first proposed. Then, expressed as the feasibility of a linear matrix inequality (LMI) with an equality constraint, sufficient conditions are derived in order to ensure the globally mean-square asymptotic stability of the system dynamics on the sliding surface. A discrete-time SMC controller is then synthesized to guarantee the discrete-time sliding mode reaching condition with the specified sliding surface. Finally, a simulation example is given to show the effectiveness of the proposed method.展开更多
This paper addresses the problem of fault detection(FD) for networked systems with access constraints and packet dropouts.Two independent Markov chains are used to describe the sequences of channels which are availa...This paper addresses the problem of fault detection(FD) for networked systems with access constraints and packet dropouts.Two independent Markov chains are used to describe the sequences of channels which are available for communication at an instant and the packet dropout process,respectively.Performance indexes H∞ and H_ are introduced to describe the robustness of residual against external disturbances and sensitivity of residual to faults,respectively.By using a mode-dependent fault detection filter(FDF) as residual generator,the addressed FD problem is converted into an auxiliary filter design problem with the above index constraints.A sufficient condition for the existence of the FDF is derived in terms of certain linear matrix inequalities(LMIs).When these LMIs are feasible,the explicit expression of the desired FDF can also be characterized.A numerical example is exploited to show the usefulness of the proposed results.展开更多
The fault detection problem for the nonlinear networked control system (NCS) with packet dropout and delay is investigated. A nonlinear stochastic system model is proposed to account for the NCS with random packet d...The fault detection problem for the nonlinear networked control system (NCS) with packet dropout and delay is investigated. A nonlinear stochastic system model is proposed to account for the NCS with random packet dropout and network- induced non-uniformly distributed time-varying delay in both from sensor to controller (S/C) and from controller to actuator (C/A). Based on the obtained NCS model, employing an observer-based fault detection filter as the residual generator, the addressed fault detection problem is converted into an auxiliary nonlinear H∞ control problem. Then, with the help of Lyapunov functional approach, a sufficient condition for the desired fault detection filter is constructed in terms of certain linear matrix inequalities, which depend on not only the delay interval but also the delay interval occurrence rate and successful packet communication rate. Especially, a trade-off phenomenon between the maximum allowable delay bound and successful data packet transmission rate is found, which is typically resulted from the limited bandwidth of communication networks. The effectiveness of the proposed method is demonstrated by a simulation example.展开更多
This paper considers the problem of control of networked systems via output feedback. The controller consists of two parts: a state observer that estimates plant state from the output when it is available via the comm...This paper considers the problem of control of networked systems via output feedback. The controller consists of two parts: a state observer that estimates plant state from the output when it is available via the communication network, and a model of the plant that is used to generate a control signal when the plant output is not available from the network. Necessary and sufficient conditions for the exponential stability of the closed loop system are derived in terms of the networked dwell time and the system parameters. The results suggest simple procedures for designing the output feedback controller proposed. Numerical simulations show the feasibility and efficiency of the proposed methods.展开更多
This paper discusses the model-based predictive controller design of networked nonlinear systems with communica- tion delay and data loss. Based on the analysis of the closed-loop networked predictive control systems,...This paper discusses the model-based predictive controller design of networked nonlinear systems with communica- tion delay and data loss. Based on the analysis of the closed-loop networked predictive control systems, the model-based networked predictive control strategy can compensate for communication delay and data loss in an active way. The designed model-based predictive controller can also guarantee the stability of the closed-loop networked system. The simulation re- suits demonstrate the feasibility and efficacy of the proposed model-based predictive controller design scheme.展开更多
This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication...This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.展开更多
Dear Editor,This letter investigates the output tracking control issue of networked control systems(NCSs)with communication constraints and denial-of-service(DoS)attacks in the sensor-to-controller channel,both of whi...Dear Editor,This letter investigates the output tracking control issue of networked control systems(NCSs)with communication constraints and denial-of-service(DoS)attacks in the sensor-to-controller channel,both of which would induce random network delays.展开更多
With the rapid development of network technology and control technology,a networked multi-agent control system is a key direction of modern industrial control systems,such as industrial Internet systems.This paper stu...With the rapid development of network technology and control technology,a networked multi-agent control system is a key direction of modern industrial control systems,such as industrial Internet systems.This paper studies the tracking control problem of networked multi-agent systems with communication constraints,where each agent has no information on the dynamics of other agents except their outputs.A networked predictive proportional integral derivative(PPID)tracking scheme is proposed to achieve the desired tracking performance,compensate actively for communication delays,and simplify implementation in a distributed manner.This scheme combines the past,present and predictive information of neighbour agents to form a tracking error signal for each agent,and applies the proportional,integral,and derivative of the agent tracking error signal to control each individual agent.The criteria of the stability and output tracking consensus of multi-agent systems with the networked PPID tracking scheme are derived through detailed analysis on the closed-loop systems.The effectiveness of the networked PPID tracking scheme is illustrated via an example.展开更多
Dear Editor,This letter deals with the stabilization of Lurie networked control systems with network-induced delays(NID).By constructing a twosided looped Lyapunov functional,a sufficient condition is derived to ensur...Dear Editor,This letter deals with the stabilization of Lurie networked control systems with network-induced delays(NID).By constructing a twosided looped Lyapunov functional,a sufficient condition is derived to ensure the absolute stability of the resultant closed-loop system under a state feedback controller.Then,based on this condition,a cone complementary linearisation(CCL)iterative algorithm is presented to design state feedback controller.It is shown via a numerical example that the proposed method can deliver less conservative results as well as fewer iterations if compared with existing ones.展开更多
This paper addresses the decentralized consensus problem for a system of multiple dynamic agents with remote controllers via networking,known as a networked control multi-agent system(NCMAS).It presents a challenging ...This paper addresses the decentralized consensus problem for a system of multiple dynamic agents with remote controllers via networking,known as a networked control multi-agent system(NCMAS).It presents a challenging scenario where partial dynamic entities or remote control units are vulnerable to disclosure attacks,making them potentially malicious.To tackle this issue,we propose a secure decentralized control design approach employing a double-layer cryptographic strategy.This approach not only ensures that the input and output information of the benign entities remains protected from the malicious entities but also practically achieves consensus performance.The paper provides an explicit design,supported by theoretical proof and numerical verification,covering stability,steady-state error,and the prevention of computation overflow or underflow.展开更多
A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a...A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model.展开更多
The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during the...The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches.展开更多
AIM:To figure out whether various atropine dosages may slow the progression of myopia in Chinese kids and teenagers and to determine the optimal atropine concentration for effectively slowing the progression of myopia...AIM:To figure out whether various atropine dosages may slow the progression of myopia in Chinese kids and teenagers and to determine the optimal atropine concentration for effectively slowing the progression of myopia.METHODS:A systematic search was conducted across the Cochrane Library,PubMed,Web of Science,EMBASE,CNKI,CBM,VIP,and Wanfang database,encompassing literature on slowing progression of myopia with varying atropine concentrations from database inception to January 17,2024.Data extraction and quality assessment were performed,and a network Meta-analysis was executed using Stata version 14.0 Software.Results were visually represented through graphs.RESULTS:Fourteen papers comprising 2475 cases were included;five different concentrations of atropine solution were used.The network Meta-analysis,along with the surface under the cumulative ranking curve(SUCRA),showed that 1%atropine(100%)>0.05%atropine(74.9%)>0.025%atropine(51.6%)>0.02%atropine(47.9%)>0.01%atropine(25.6%)>control in refraction change and 1%atropine(98.7%)>0.05%atropine(70.4%)>0.02%atropine(61.4%)>0.025%atropine(42%)>0.01%atropine(27.4%)>control in axial length(AL)change.CONCLUSION:In Chinese children and teenagers,the five various concentrations of atropine can reduce the progression of myopia.Although the network Meta-analysis showed that 1%atropine is the best one for controlling refraction and AL change,there is a high incidence of adverse effects with the use of 1%atropine.Therefore,we suggest that 0.05%atropine is optimal for Chinese children to slow myopia progression.展开更多
Maintenance is an important technical measure to maintain and restore the performance status of equipment and ensure the safety of the production process in industrial production,and is an indispensable part of predic...Maintenance is an important technical measure to maintain and restore the performance status of equipment and ensure the safety of the production process in industrial production,and is an indispensable part of prediction and health management.However,most of the existing remaining useful life(RUL)prediction methods assume that there is no maintenance or only perfect maintenance during the whole life cycle;thus,the predicted RUL value of the system is obviously lower than its actual operating value.The complex environment of the system further increases the difficulty of maintenance,and its maintenance nodes and maintenance degree are limited by the construction period and working conditions,which increases the difficulty of RUL prediction.An RUL prediction method for a multi-omponent system based on the Wiener process considering maintenance is proposed.The performance degradation model of components is established by a dynamic Bayesian network as the initial model,which solves the uncertainty of insufficient data problems.Based on the experience of experts,the degree of degradation is divided according to Poisson process simulation random failure,and different maintenance strategies are used to estimate a variety of condition maintenance factors.An example of a subsea tree system is given to verify the effectiveness of the proposed method.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertaint...For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertainty of fault states.To overcome these problems,this paper proposes a reliability analysismethod based on T-S fault tree analysis(T-S FTA)and Hyper-ellipsoidal Bayesian network(HE-BN).The method describes the connection between the various systemfault events by T-S fuzzy gates and translates them into a Bayesian network(BN)model.Combining the advantages of T-S fault tree modeling with the advantages of Bayesian network computation,a reliability modeling method is proposed that can fully reflect the fault characteristics of complex systems.Experts describe the degree of failure of the event in the form of interval numbers.The knowledge and experience of experts are fused with the D-S evidence theory to obtain the initial failure probability interval of the BN root node.Then,the Hyper-ellipsoidal model(HM)constrains the initial failure probability interval and constructs a HE-BN for the system.A reliability analysismethod is proposed to solve the problem of insufficient failure data and uncertainty in the degree of failure.The failure probability of the system is further calculated and the key components that affect the system’s reliability are identified.The proposedmethod accounts for the uncertainty and incompleteness of the failure data in complex multi-state systems and establishes an easily computable reliability model that fully reflects the characteristics of complex faults and accurately identifies system weaknesses.The feasibility and accuracy of the method are further verified by conducting case studies.展开更多
The pursuit of improved quality of life standards has significantly influenced the contemporary mining model in the 21st century.This era is witnessing an unprecedented transformation driven by pressing concerns relat...The pursuit of improved quality of life standards has significantly influenced the contemporary mining model in the 21st century.This era is witnessing an unprecedented transformation driven by pressing concerns related to sustainability,climate change,the just energy transition,dynamic operating environments,and complex social challenges.Such transitions present both opportunities and obstacles.The aim of this study is to provide an extensive literature review on energy transition to identify the challenges and strategies associated with navigating transformations in energy systems.Understanding these transformations is particularly critical in the face of the severe consequences of global warming,where an accelerated energy transition is viewed as a universal remedy.Adopting a socio-technological systems perspective,specifically through the application of Actor Network Theory(ANT),this research provides a theoretical foundation while categorising challenges into five distinct domains and outlining strategies across these different dimensions.These insights are specifically tailored for emerging market countries to effectively navigate energy transition while fostering the development of resilient societies.Furthermore,our findings highlight that energy transition encompasses more than a mere technological shift;it entails fundamental changes in various systemic socio-economic imperatives.Through focusing on the role of social structures in transitions,this study makes a significant and innovative contribution to ANT,which has historically been criticised for its limited acknowledgement of social structures.Consequently,we propose an emerging market energy transition framework,which not only addresses technological aspects,but also integrates social considerations.This framework paves the way for future research and exploration of energy transition dynamics.The outcomes of this study offer valuable insights to policymakers,researchers,and practitioners engaged in the mining industry,enabling them to comprehend the multifaceted challenges involved and providing practical strategies for effective resolution.Through incorporating the social dimension into the analysis,we enhance the understanding of the complex nature of energy system transformations,facilitating a more holistic approach towards achieving sustainable and resilient energy transitions in emerging markets and beyond.展开更多
BACKGROUND Various non-steroidal anti-inflammatory drugs(NSAIDs)have been used for juvenile idiopathic arthritis(JIA).However,the optimal method for JIA has not yet been developed.AIM To perform a systematic review an...BACKGROUND Various non-steroidal anti-inflammatory drugs(NSAIDs)have been used for juvenile idiopathic arthritis(JIA).However,the optimal method for JIA has not yet been developed.AIM To perform a systematic review and network meta-analysis to determine the optimal instructions.METHODS We searched for randomized controlled trials(RCTs)from PubMed,EMBASE,Google Scholar,CNKI,and Wanfang without restriction for publication date or language at August,2023.Any RCTs that comparing the effectiveness of NSAIDs with each other or placebo for JIA were included in this network meta-analysis.The surface under the cumulative ranking curve(SUCRA)analysis was used to rank the treatments.P value less than 0.05 was identified as statistically significant.RESULTS We included 8 RCTs(1127 patients)comparing 8 different instructions including meloxicam(0.125 qd and 0.250 qd),Celecoxib(3 mg/kg bid and 6 mg/kg bid),piroxicam,Naproxen(5.0 mg/kg/d,7.5 mg/kg/d and 12.5 mg/kg/d),inuprofen(30-40 mg/kg/d),Aspirin(60-80 mg/kg/d,75 mg/kg/d,and 55 mg/kg/d),Tolmetin(15 mg/kg/d),Rofecoxib,and placebo.There were no significant differences between any two NSAIDs regarding ACR Pedi 30 response.The SUCRA shows that celecoxib(6 mg/kg bid)ranked first(SUCRA,88.9%),rofecoxib ranked second(SUCRA,68.1%),Celecoxib(3 mg/kg bid)ranked third(SUCRA,51.0%).There were no significant differences between any two NSAIDs regarding adverse events.The SUCRA shows that placebo ranked first(SUCRA,88.2%),piroxicam ranked second(SUCRA,60.5%),rofecoxib(0.6 mg/kg qd)ranked third(SUCRA,56.1%),meloxicam(0.125 mg/kg qd)ranked fourth(SUCRA,56.1%),and rofecoxib(0.3 mg/kg qd)ranked fifth(SUCRA,56.1%).CONCLUSION In summary,celecoxib(6 mg/kg bid)was found to be the most effective NSAID for treating JIA.Rofecoxib,piroxicam,and meloxicam may be safer options,but further research is needed to confirm these findings in larger trials with higher quality studies.展开更多
In the rapidly evolving field of cybersecurity,the challenge of providing realistic exercise scenarios that accurately mimic real-world threats has become increasingly critical.Traditional methods often fall short in ...In the rapidly evolving field of cybersecurity,the challenge of providing realistic exercise scenarios that accurately mimic real-world threats has become increasingly critical.Traditional methods often fall short in capturing the dynamic and complex nature of modern cyber threats.To address this gap,we propose a comprehensive framework designed to create authentic network environments tailored for cybersecurity exercise systems.Our framework leverages advanced simulation techniques to generate scenarios that mirror actual network conditions faced by professionals in the field.The cornerstone of our approach is the use of a conditional tabular generative adversarial network(CTGAN),a sophisticated tool that synthesizes realistic synthetic network traffic by learning fromreal data patterns.This technology allows us to handle technical components and sensitive information with high fidelity,ensuring that the synthetic data maintains statistical characteristics similar to those observed in real network environments.By meticulously analyzing the data collected from various network layers and translating these into structured tabular formats,our framework can generate network traffic that closely resembles that found in actual scenarios.An integral part of our process involves deploying this synthetic data within a simulated network environment,structured on software-defined networking(SDN)principles,to test and refine the traffic patterns.This simulation not only facilitates a direct comparison between the synthetic and real traffic but also enables us to identify discrepancies and refine the accuracy of our simulations.Our initial findings indicate an error rate of approximately 29.28%between the synthetic and real traffic data,highlighting areas for further improvement and adjustment.By providing a diverse array of network scenarios through our framework,we aim to enhance the exercise systems used by cybersecurity professionals.This not only improves their ability to respond to actual cyber threats but also ensures that the exercise is cost-effective and efficient.展开更多
基金supported in part by the Royal Society of the UK,the Nationa Natural Science,Foundation of China(61329301,61374039)the Program for Capability Construction of Shanghai Provincial Universities(15550502500)the Alexander von Humboldt Foundation of Germany
文摘In order to make the information transmission more efficient and reliable in a digital communication channel with limited capacity, various encoding-decoding techniques have been proposed and widely applied in many branches of the signal processing including digital communications, data compression,information encryption, etc. Recently, due to its promising application potentials in the networked systems(NSs), the analysis and synthesis issues of the NSs under various encoding-decoding schemes have stirred some research attention. However, because of the network-enhanced complexity caused by the limited network resources, it poses new challenges to the design of suitable encoding-decoding procedures to meet certain control or filtering performance for the NSs. In this survey paper, our aim is to present a comprehensive review of the encoding-decodingbased control and filtering problems for different types of NSs.First, some basic introduction with respect to the coding-decoding mechanism is presented in terms of its engineering insights,specific properties and theoretical formulations. Then, the recent representative research progress in the design of the encodingdecoding protocols for various control and filtering problems is discussed. Some possible further research topics are finally outlined for the encoding-decoding-based NSs.
基金supported by the Engineering and Physical Sciences Research Council(EPSRC)of the UK(No.GR/S27658/01)the Royal Society of the UK and the Alexander von Humboldt Foundation of Germany
文摘This paper deals with the robust control problem for a class of uncertain nonlinear networked systems with stochastic communication delays via sliding mode conception (SMC). A sequence of variables obeying Bernoulli distribution are employed to model the randomly occurring communication delays which could be different for different state variables. A discrete switching function that is different from those in the existing literature is first proposed. Then, expressed as the feasibility of a linear matrix inequality (LMI) with an equality constraint, sufficient conditions are derived in order to ensure the globally mean-square asymptotic stability of the system dynamics on the sliding surface. A discrete-time SMC controller is then synthesized to guarantee the discrete-time sliding mode reaching condition with the specified sliding surface. Finally, a simulation example is given to show the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (6057408860874053)
文摘This paper addresses the problem of fault detection(FD) for networked systems with access constraints and packet dropouts.Two independent Markov chains are used to describe the sequences of channels which are available for communication at an instant and the packet dropout process,respectively.Performance indexes H∞ and H_ are introduced to describe the robustness of residual against external disturbances and sensitivity of residual to faults,respectively.By using a mode-dependent fault detection filter(FDF) as residual generator,the addressed FD problem is converted into an auxiliary filter design problem with the above index constraints.A sufficient condition for the existence of the FDF is derived in terms of certain linear matrix inequalities(LMIs).When these LMIs are feasible,the explicit expression of the desired FDF can also be characterized.A numerical example is exploited to show the usefulness of the proposed results.
基金supported by the National Natural Science Foundation of China (60874053 60574088)
文摘The fault detection problem for the nonlinear networked control system (NCS) with packet dropout and delay is investigated. A nonlinear stochastic system model is proposed to account for the NCS with random packet dropout and network- induced non-uniformly distributed time-varying delay in both from sensor to controller (S/C) and from controller to actuator (C/A). Based on the obtained NCS model, employing an observer-based fault detection filter as the residual generator, the addressed fault detection problem is converted into an auxiliary nonlinear H∞ control problem. Then, with the help of Lyapunov functional approach, a sufficient condition for the desired fault detection filter is constructed in terms of certain linear matrix inequalities, which depend on not only the delay interval but also the delay interval occurrence rate and successful packet communication rate. Especially, a trade-off phenomenon between the maximum allowable delay bound and successful data packet transmission rate is found, which is typically resulted from the limited bandwidth of communication networks. The effectiveness of the proposed method is demonstrated by a simulation example.
基金This work is supported by the National Natural Science Foundation of China (No. 69925307, No. 10372002, No. 60274001, and No. 60304014)the National Key Basic Research and Development Program (No. 2002CB312200)the China Postdoctoral Program Foundation.
文摘This paper considers the problem of control of networked systems via output feedback. The controller consists of two parts: a state observer that estimates plant state from the output when it is available via the communication network, and a model of the plant that is used to generate a control signal when the plant output is not available from the network. Necessary and sufficient conditions for the exponential stability of the closed loop system are derived in terms of the networked dwell time and the system parameters. The results suggest simple procedures for designing the output feedback controller proposed. Numerical simulations show the feasibility and efficiency of the proposed methods.
基金Project supported by the Key Program for the National Natural Science Foundation of China(Grant No.61333003)the General Program for the National Natural Science Foundation of China(Grant No.61273104)
文摘This paper discusses the model-based predictive controller design of networked nonlinear systems with communica- tion delay and data loss. Based on the analysis of the closed-loop networked predictive control systems, the model-based networked predictive control strategy can compensate for communication delay and data loss in an active way. The designed model-based predictive controller can also guarantee the stability of the closed-loop networked system. The simulation re- suits demonstrate the feasibility and efficacy of the proposed model-based predictive controller design scheme.
基金supported in part by the National Natural Science Foundation of China (61933007,62273087,U22A2044,61973102,62073180)the Shanghai Pujiang Program of China (22PJ1400400)+1 种基金the Royal Society of the UKthe Alexander von Humboldt Foundation of Germany。
文摘This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.
基金supported by the National Natural Science Foundation of China(62173002,62403010,52301408)the Beijing Natural Science Foundation(4222045)+1 种基金the Yuxiu Innovation Project of North China University of Technology(2024NC UTYXCX111)the China Postdoctoral Science Foundation(2024M750192)。
文摘Dear Editor,This letter investigates the output tracking control issue of networked control systems(NCSs)with communication constraints and denial-of-service(DoS)attacks in the sensor-to-controller channel,both of which would induce random network delays.
文摘With the rapid development of network technology and control technology,a networked multi-agent control system is a key direction of modern industrial control systems,such as industrial Internet systems.This paper studies the tracking control problem of networked multi-agent systems with communication constraints,where each agent has no information on the dynamics of other agents except their outputs.A networked predictive proportional integral derivative(PPID)tracking scheme is proposed to achieve the desired tracking performance,compensate actively for communication delays,and simplify implementation in a distributed manner.This scheme combines the past,present and predictive information of neighbour agents to form a tracking error signal for each agent,and applies the proportional,integral,and derivative of the agent tracking error signal to control each individual agent.The criteria of the stability and output tracking consensus of multi-agent systems with the networked PPID tracking scheme are derived through detailed analysis on the closed-loop systems.The effectiveness of the networked PPID tracking scheme is illustrated via an example.
基金This work was supported by the National Natural Science Foundation of China(62173136)the Natural Science Foundation of Hunan Province(2020JJ2013,2021JJ50047)。
文摘Dear Editor,This letter deals with the stabilization of Lurie networked control systems with network-induced delays(NID).By constructing a twosided looped Lyapunov functional,a sufficient condition is derived to ensure the absolute stability of the resultant closed-loop system under a state feedback controller.Then,based on this condition,a cone complementary linearisation(CCL)iterative algorithm is presented to design state feedback controller.It is shown via a numerical example that the proposed method can deliver less conservative results as well as fewer iterations if compared with existing ones.
文摘This paper addresses the decentralized consensus problem for a system of multiple dynamic agents with remote controllers via networking,known as a networked control multi-agent system(NCMAS).It presents a challenging scenario where partial dynamic entities or remote control units are vulnerable to disclosure attacks,making them potentially malicious.To tackle this issue,we propose a secure decentralized control design approach employing a double-layer cryptographic strategy.This approach not only ensures that the input and output information of the benign entities remains protected from the malicious entities but also practically achieves consensus performance.The paper provides an explicit design,supported by theoretical proof and numerical verification,covering stability,steady-state error,and the prevention of computation overflow or underflow.
文摘A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model.
文摘The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches.
基金Supported by the National Key R&D Plan“Intergovernmental International Scientific and Technological Innovation Cooperation”(No.2022YFE0132600)Shenzhen Fund for Guangdong Provincial High-level Clinical Key Specialties(No.SZGSP014)+1 种基金Sanming Project of Medicine in Shenzhen(No.SZSM202311012)Shenzhen Science and Technology Program(No.KCXFZ20211020163814021).
文摘AIM:To figure out whether various atropine dosages may slow the progression of myopia in Chinese kids and teenagers and to determine the optimal atropine concentration for effectively slowing the progression of myopia.METHODS:A systematic search was conducted across the Cochrane Library,PubMed,Web of Science,EMBASE,CNKI,CBM,VIP,and Wanfang database,encompassing literature on slowing progression of myopia with varying atropine concentrations from database inception to January 17,2024.Data extraction and quality assessment were performed,and a network Meta-analysis was executed using Stata version 14.0 Software.Results were visually represented through graphs.RESULTS:Fourteen papers comprising 2475 cases were included;five different concentrations of atropine solution were used.The network Meta-analysis,along with the surface under the cumulative ranking curve(SUCRA),showed that 1%atropine(100%)>0.05%atropine(74.9%)>0.025%atropine(51.6%)>0.02%atropine(47.9%)>0.01%atropine(25.6%)>control in refraction change and 1%atropine(98.7%)>0.05%atropine(70.4%)>0.02%atropine(61.4%)>0.025%atropine(42%)>0.01%atropine(27.4%)>control in axial length(AL)change.CONCLUSION:In Chinese children and teenagers,the five various concentrations of atropine can reduce the progression of myopia.Although the network Meta-analysis showed that 1%atropine is the best one for controlling refraction and AL change,there is a high incidence of adverse effects with the use of 1%atropine.Therefore,we suggest that 0.05%atropine is optimal for Chinese children to slow myopia progression.
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFC3004802)the National Natural Science Foundation of China(Grant Nos.52171287,52325107)+3 种基金High Tech Ship Research Project of Ministry of Industry and Information Technology(Grant Nos.2023GXB01-05-004-03,GXBZH2022-293)the Science Foundation for Distinguished Young Scholars of Shandong Province(Grant No.ZR2022JQ25)the Taishan Scholars Project(Grant No.tsqn201909063)the sub project of the major special project of CNOOC Development Technology,“Research on the Integrated Technology of Intrinsic Safety of Offshore Oil Facilities”(Phase I),“Research on Dynamic Quantitative Analysis and Control Technology of Risks in Offshore Production Equipment”(Grant No.HFKJ-2D2X-AQ-2021-03)。
文摘Maintenance is an important technical measure to maintain and restore the performance status of equipment and ensure the safety of the production process in industrial production,and is an indispensable part of prediction and health management.However,most of the existing remaining useful life(RUL)prediction methods assume that there is no maintenance or only perfect maintenance during the whole life cycle;thus,the predicted RUL value of the system is obviously lower than its actual operating value.The complex environment of the system further increases the difficulty of maintenance,and its maintenance nodes and maintenance degree are limited by the construction period and working conditions,which increases the difficulty of RUL prediction.An RUL prediction method for a multi-omponent system based on the Wiener process considering maintenance is proposed.The performance degradation model of components is established by a dynamic Bayesian network as the initial model,which solves the uncertainty of insufficient data problems.Based on the experience of experts,the degree of degradation is divided according to Poisson process simulation random failure,and different maintenance strategies are used to estimate a variety of condition maintenance factors.An example of a subsea tree system is given to verify the effectiveness of the proposed method.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金the National Natural Science Foundation of China(51875073).
文摘For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertainty of fault states.To overcome these problems,this paper proposes a reliability analysismethod based on T-S fault tree analysis(T-S FTA)and Hyper-ellipsoidal Bayesian network(HE-BN).The method describes the connection between the various systemfault events by T-S fuzzy gates and translates them into a Bayesian network(BN)model.Combining the advantages of T-S fault tree modeling with the advantages of Bayesian network computation,a reliability modeling method is proposed that can fully reflect the fault characteristics of complex systems.Experts describe the degree of failure of the event in the form of interval numbers.The knowledge and experience of experts are fused with the D-S evidence theory to obtain the initial failure probability interval of the BN root node.Then,the Hyper-ellipsoidal model(HM)constrains the initial failure probability interval and constructs a HE-BN for the system.A reliability analysismethod is proposed to solve the problem of insufficient failure data and uncertainty in the degree of failure.The failure probability of the system is further calculated and the key components that affect the system’s reliability are identified.The proposedmethod accounts for the uncertainty and incompleteness of the failure data in complex multi-state systems and establishes an easily computable reliability model that fully reflects the characteristics of complex faults and accurately identifies system weaknesses.The feasibility and accuracy of the method are further verified by conducting case studies.
基金University of the Witwatersrand Additional funding is from the DSI-National Research Foundation(NRF)Thuthuka Grant(Grant UID:121973)and DSI-NRF CIMERA.
文摘The pursuit of improved quality of life standards has significantly influenced the contemporary mining model in the 21st century.This era is witnessing an unprecedented transformation driven by pressing concerns related to sustainability,climate change,the just energy transition,dynamic operating environments,and complex social challenges.Such transitions present both opportunities and obstacles.The aim of this study is to provide an extensive literature review on energy transition to identify the challenges and strategies associated with navigating transformations in energy systems.Understanding these transformations is particularly critical in the face of the severe consequences of global warming,where an accelerated energy transition is viewed as a universal remedy.Adopting a socio-technological systems perspective,specifically through the application of Actor Network Theory(ANT),this research provides a theoretical foundation while categorising challenges into five distinct domains and outlining strategies across these different dimensions.These insights are specifically tailored for emerging market countries to effectively navigate energy transition while fostering the development of resilient societies.Furthermore,our findings highlight that energy transition encompasses more than a mere technological shift;it entails fundamental changes in various systemic socio-economic imperatives.Through focusing on the role of social structures in transitions,this study makes a significant and innovative contribution to ANT,which has historically been criticised for its limited acknowledgement of social structures.Consequently,we propose an emerging market energy transition framework,which not only addresses technological aspects,but also integrates social considerations.This framework paves the way for future research and exploration of energy transition dynamics.The outcomes of this study offer valuable insights to policymakers,researchers,and practitioners engaged in the mining industry,enabling them to comprehend the multifaceted challenges involved and providing practical strategies for effective resolution.Through incorporating the social dimension into the analysis,we enhance the understanding of the complex nature of energy system transformations,facilitating a more holistic approach towards achieving sustainable and resilient energy transitions in emerging markets and beyond.
基金Supported by the Science and Technology Plan Project of Jingmen Science and Technology Bureau,No.2018YFZD025。
文摘BACKGROUND Various non-steroidal anti-inflammatory drugs(NSAIDs)have been used for juvenile idiopathic arthritis(JIA).However,the optimal method for JIA has not yet been developed.AIM To perform a systematic review and network meta-analysis to determine the optimal instructions.METHODS We searched for randomized controlled trials(RCTs)from PubMed,EMBASE,Google Scholar,CNKI,and Wanfang without restriction for publication date or language at August,2023.Any RCTs that comparing the effectiveness of NSAIDs with each other or placebo for JIA were included in this network meta-analysis.The surface under the cumulative ranking curve(SUCRA)analysis was used to rank the treatments.P value less than 0.05 was identified as statistically significant.RESULTS We included 8 RCTs(1127 patients)comparing 8 different instructions including meloxicam(0.125 qd and 0.250 qd),Celecoxib(3 mg/kg bid and 6 mg/kg bid),piroxicam,Naproxen(5.0 mg/kg/d,7.5 mg/kg/d and 12.5 mg/kg/d),inuprofen(30-40 mg/kg/d),Aspirin(60-80 mg/kg/d,75 mg/kg/d,and 55 mg/kg/d),Tolmetin(15 mg/kg/d),Rofecoxib,and placebo.There were no significant differences between any two NSAIDs regarding ACR Pedi 30 response.The SUCRA shows that celecoxib(6 mg/kg bid)ranked first(SUCRA,88.9%),rofecoxib ranked second(SUCRA,68.1%),Celecoxib(3 mg/kg bid)ranked third(SUCRA,51.0%).There were no significant differences between any two NSAIDs regarding adverse events.The SUCRA shows that placebo ranked first(SUCRA,88.2%),piroxicam ranked second(SUCRA,60.5%),rofecoxib(0.6 mg/kg qd)ranked third(SUCRA,56.1%),meloxicam(0.125 mg/kg qd)ranked fourth(SUCRA,56.1%),and rofecoxib(0.3 mg/kg qd)ranked fifth(SUCRA,56.1%).CONCLUSION In summary,celecoxib(6 mg/kg bid)was found to be the most effective NSAID for treating JIA.Rofecoxib,piroxicam,and meloxicam may be safer options,but further research is needed to confirm these findings in larger trials with higher quality studies.
基金supported in part by the Korea Research Institute for Defense Technology Planning and Advancement(KRIT)funded by the Korean Government’s Defense Acquisition Program Administration(DAPA)under Grant KRIT-CT-21-037in part by the Ministry of Education,Republic of Koreain part by the National Research Foundation of Korea under Grant RS-2023-00211871.
文摘In the rapidly evolving field of cybersecurity,the challenge of providing realistic exercise scenarios that accurately mimic real-world threats has become increasingly critical.Traditional methods often fall short in capturing the dynamic and complex nature of modern cyber threats.To address this gap,we propose a comprehensive framework designed to create authentic network environments tailored for cybersecurity exercise systems.Our framework leverages advanced simulation techniques to generate scenarios that mirror actual network conditions faced by professionals in the field.The cornerstone of our approach is the use of a conditional tabular generative adversarial network(CTGAN),a sophisticated tool that synthesizes realistic synthetic network traffic by learning fromreal data patterns.This technology allows us to handle technical components and sensitive information with high fidelity,ensuring that the synthetic data maintains statistical characteristics similar to those observed in real network environments.By meticulously analyzing the data collected from various network layers and translating these into structured tabular formats,our framework can generate network traffic that closely resembles that found in actual scenarios.An integral part of our process involves deploying this synthetic data within a simulated network environment,structured on software-defined networking(SDN)principles,to test and refine the traffic patterns.This simulation not only facilitates a direct comparison between the synthetic and real traffic but also enables us to identify discrepancies and refine the accuracy of our simulations.Our initial findings indicate an error rate of approximately 29.28%between the synthetic and real traffic data,highlighting areas for further improvement and adjustment.By providing a diverse array of network scenarios through our framework,we aim to enhance the exercise systems used by cybersecurity professionals.This not only improves their ability to respond to actual cyber threats but also ensures that the exercise is cost-effective and efficient.