This paper provides preliminary results on performance limitations for a class of discrete time Kleinman control systems whose open loop poles lie strictly outside the unit circle. By exploiting the properties of the ...This paper provides preliminary results on performance limitations for a class of discrete time Kleinman control systems whose open loop poles lie strictly outside the unit circle. By exploiting the properties of the Kleinman controllers and using of Mgebraic Riccati equation (ARE), the relationship between total control energy of Kleinman control systems and the minimum energy needed to stabilize the open-loop systems is revealed. The result reflects how the horizon length of Kleinman controllers affects the performance of the closed-loop systems and quantifies how close the performance of Kleinman control systems is to the minimum energy.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited commu...This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited communication channels). By taking the derivative character of network-induced delay into full consideration and defining new Lyapunov functions, linear matrix inequalities (LMIs)-based H-infinity performance optimization and controller design are presented for NCSs with limited communication channels. If there do not exist any constraints on the communication channels, the proposed design methods are also applicable. The merit of the proposed methods lies in their Jess conservativeness, which is achieved by avoiding the utilization of bounding inequalities for cross products of vectors. The simulation results illustrate the merit and effectiveness of the proposed H-infinity controller design for NCSs with limited communication channels.展开更多
In networked control system (NCS) where control loop is closed over communication network, limited data rate may deteriorate control performance even destabilize the control system. In this paper, performance analysis...In networked control system (NCS) where control loop is closed over communication network, limited data rate may deteriorate control performance even destabilize the control system. In this paper, performance analysis of a typical second-order control system with data rate constraints is conducted, and the concept of critical data rate (CDR) is presented. In order to find the CDR in NCS, an approximate searching method is proposed to guarantee acceptable control performance.展开更多
An integrated approach that considers the performance limitations of tracking control systems for air-breathing hypersonic vehicles is proposed. First, a set of ascent trajectories is obtained as candidates for tracki...An integrated approach that considers the performance limitations of tracking control systems for air-breathing hypersonic vehicles is proposed. First, a set of ascent trajectories is obtained as candidates for tracking control through a trajectory design method that considers the available acceleration. Second, the basic theory of performance limitations, which is adopted to calculate the limits on control performance through the trajectory, is integrated. The openloop dynamics of air-breathing hypersonic vehicles is responsible for these limits on the control system. Comprehensive specifications on stability, tracking accuracy, and robustness are derived, and the flight envelope with constraints and control specifications is identified. Simulation results suggest that trajectory design should consider restrictions on control performance to obtain reliable solutions.展开更多
A switched system approach is proposed to model networked control systems (NCSs) with communication constraints. This enables us to apply the rich theory of switched systems to analyzing such NCSs. Sufficient condit...A switched system approach is proposed to model networked control systems (NCSs) with communication constraints. This enables us to apply the rich theory of switched systems to analyzing such NCSs. Sufficient conditions are presented on the stabilization of NCSs. Stabilizing state/output feedback controllers can be constructed by using the feasible solutions of some linear matrix inequalities (LMIs). The merit of our proposed approach is that the behavior of the NCSs can be studied by considering switched system without augmenting the system. A simulation example is worked out to illustrate the effectiveness of the proposed approach.展开更多
The H_∞ performance analysis and controller design for linear networked control systems(NCSs) are presented.The NCSs are considered a linear continuous system with time-varying interval input delay by assuming that t...The H_∞ performance analysis and controller design for linear networked control systems(NCSs) are presented.The NCSs are considered a linear continuous system with time-varying interval input delay by assuming that the sensor is time-driven and the logic Zero-order-holder(ZOH) and controller are event-driven.Based on this model,the delay interval is divided into two equal subintervals for H_∞ performance analysis.An improved H_∞ stabilization condition is obtained in linear matrix inequalities(LMIs) framework by adequately considering the information about the bounds of the input delay to construct novel Lyapunov–Krasovskii functionals(LKFs).For the purpose of reducing the conservatism of the proposed results,the bounds of the LKFs differential cross terms are properly estimated without introducing any slack matrix variables.Moreover,the H_∞ controller is reasonably designed to guarantee the robust asymptotic stability for the linear NCSs with an H_∞ performance level γ.Numerical simulation examples are included to validate the reduced conservatism and effectiveness of our proposed method.展开更多
Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H...Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H∞ performance problemsfor such networked control systems (NCSs) are equivalentlytransferred into the corresponding problems for switching systemswith arbitrary switching. Then, a sufficient condition for the existenceof the robust D-stabilizing controllers is derived in termsof linear matrix inequality (LMI), and the design method is alsopresented for the state feedback controllers which guarantee thatall the closed-loop poles remain inside the specified disk D(α,r)and the desired disturbance attenuation level. Finally, an illustrativeexample is given to demonstrate the effectiveness of the proposedresults.展开更多
Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2...Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2-based in the HTHP in different running conditions.The results demonstrated the feasibility and reliability of M1 and M2 as new high-temperature refrigerants.Additionally,the exploration and analyses of the support vector machine(SVM)and back propagation(BP)neural network models were made to find a practical way to predict the performance of HTHP system.The results showed that SVM-Linear,SVM-RBF and BP models shared the similar ability to predict the heat capacity and power input with high accuracy.SVM-RBF demonstrated better stability for coefficient of performance prediction.Finally,the proposed SVM model was used to assess the potential of the M1 and M2.The results indicated that the HTHP system using M1 could produce heat at the temperature of 130°C with good performance.展开更多
Software performance evaluation in multimedia communication systems is typically formulated into a multi-layered client-server queuing network(MLCSQN) problem. However, the existing analytical methods to MLCSQN model ...Software performance evaluation in multimedia communication systems is typically formulated into a multi-layered client-server queuing network(MLCSQN) problem. However, the existing analytical methods to MLCSQN model cannot provide satisfactory solution in terms of accuracy, convergence and consideration of interlocking effects. To this end, this paper proposes a heuristic solving method for MLCSQN model to boost the performance prediction of distributed multimedia software systems. The core concept of this method is referred to as the basic model, which can be further decomposed into two sub-models: client sub-model and server sub-model. The client sub-model calculates think time for server sub-model, and the server sub-model calculates waiting time for client sub-model. Using a breadthfirst traversal from leaf nodes to the root node and vice versa, the basic model is then adapted to MLCSQN, with net sub-models iteratively resolved. Similarly, the interlocking problem is effectively addressed with the help of the basic model. This analytical solver enjoys advantages of fast convergence, independence on specific average value analysis(MVA) methods and eliminating interlocking effects.Numerical experimental results on accuracy and computation efficiency verify its superiority over anchors.展开更多
An integrated, efficient and effective performance management system, "dynamic performance management system", is presented, which covers the entire performance management process including measures design, analysis...An integrated, efficient and effective performance management system, "dynamic performance management system", is presented, which covers the entire performance management process including measures design, analysis, and dynamic update. The analysis of performance measures using causal loop diagrams, qualitative inference and analytic network process is mainly discussed. A real world case study is carried out throughout the paper to explain how the framework works. A software tool for DPMS, Performance Analyzer, is also introduced.展开更多
Performance of fixed relays in orthogonal frequency division multiple access (0FDMA) systems, especially the coverage and capacity performance at the cell edge, is evaluated in this paper. Two methods, theoretical a...Performance of fixed relays in orthogonal frequency division multiple access (0FDMA) systems, especially the coverage and capacity performance at the cell edge, is evaluated in this paper. Two methods, theoretical analysis and calculation and Monte Carlo simulation, are used for the evaluations. By theoreti- cal analysis and calculation, frequency efficiency equation of a relay is introduced and numerical results are calculated. Monte Carlo simulation results also verify that the calculation method is reasonable. The evaluation shows that a relay can increase system performance to a certain level if it is designed appropriately, otherwise it will be harmful for the system performance, even to reduce it.展开更多
Network storage provides high scalability, availability and flexibility for storage systems, and is widely applied to many fields. Particularly, I/O performance is of great significance. Its application is wide and ex...Network storage provides high scalability, availability and flexibility for storage systems, and is widely applied to many fields. Particularly, I/O performance is of great significance. Its application is wide and expanding rapidly. I/O performance has already become the bottleneck of the whole performance of computer systems for a long time, and under the condition of the present computer technology, I/O performance optimization method looks especially important. In the paper, I/O performance model was analyzed based on the combination of quasi birth, death process and queuing model, and then solved the model. A number of important related performance indicators and the relationship between them were given. By the way of example, this method can show the I/O performance more accurately. Finally, we got some useful conclusions, which may be used to evaluate network storage performance, and are the basis of confirming I/O scheduling strategy.展开更多
Based on high order dynamic neural network, this paper presents the tracking problem for uncertain nonlinear composite system, which contains external disturbance, whose nonlinearities are assumed to be unknown. A smo...Based on high order dynamic neural network, this paper presents the tracking problem for uncertain nonlinear composite system, which contains external disturbance, whose nonlinearities are assumed to be unknown. A smooth controller is designed to guarantee a uniform ultimate boundedness property for the tracking error and all other signals in the dosed loop. Certain measures are utilized to test its performance. No a priori knowledge of an upper bound on the “optimal” weight and modeling error is required; the weights of neural networks are updated on-line. Numerical simulations performed on a simple example illustrate and clarify the approach.展开更多
A system designed for supporting the network performance analysis and forecast effort is presented, based on the combination of offline network analysis and online real-time performance forecast. The off-line analysis...A system designed for supporting the network performance analysis and forecast effort is presented, based on the combination of offline network analysis and online real-time performance forecast. The off-line analysis will perform analysis of specific network node performance, correlation analysis of relative network nodes performance and evolutionary mathematical modeling of long-term network performance measurements. The online real-time network performance forecast will be based on one so-called hybrid prediction modeling approach for short-term network, performance prediction and trend analysis. Based on the module design, the system proposed has good intelligence, scalability and self-adaptability, which will offer highly effective network performance analysis and forecast tools for network managers, and is one ideal support platform for network performance analysis and forecast effort.展开更多
The whole performance of the networked control system (NCSs) depends on two interaction factors, namely the quality of control performance (QoP) and quality of network service (QoS). So, to optimize the whole pe...The whole performance of the networked control system (NCSs) depends on two interaction factors, namely the quality of control performance (QoP) and quality of network service (QoS). So, to optimize the whole perfor-mance of NCSs, the problem of guaranteeing QoP and QoS plays an important role in the design of NCSs. However, up to now, little work has been done in this field. In this paper, a synthesizing control model of NCSs to guarantee QoP and QoS is proposed, and a feasible condition of optimizing whole performance of NCSs is also suggested. Finally, the simulation results show that the proposed model is effective.展开更多
Providing alternative PNT service to GNSS-challenged users will be an important function of next-generation NGSO broadband satellite communication systems.Herein,a packet-based PNT service architecture in NGSO broadba...Providing alternative PNT service to GNSS-challenged users will be an important function of next-generation NGSO broadband satellite communication systems.Herein,a packet-based PNT service architecture in NGSO broadband systems is proposed in which a primary satellite and selected assistant satellites work together to provide PNT service to requesting users.Its positioning performance bounds are mathematically formulated by rigorously analyzing the bounds constrained by different waveforms.Simulations are conducted on different configurations of Walker Delta MEO constellations and Walker Star LEO constellations for corroboration,revealing the following:(1)Both MEO and LEO constellations achieve sub-meter-level positioning precision given enough satellites.(2)Compared to the GNSS Doppler-based velocity estimation method,the position advance based velocity estimation algorithm is more precise and applicable to the PNT service in NGSO broadband systems.(3)To provide PNT service to users in GNSS-challenged environments,the primary and each assistant satellite need only∼0.1‰of the time of one downlink beam.展开更多
Emulation platforms are critical for evaluation and verification in the research of networking technologies and protocols for space networks(SN).High fidelity emulating technologies have been extensively studied for S...Emulation platforms are critical for evaluation and verification in the research of networking technologies and protocols for space networks(SN).High fidelity emulating technologies have been extensively studied for SN in earlier work,while little emphasis has been placed on the performance evaluation part.In this paper,the design of a network performance analysis architecture is presented,with which high-speed network traffic can be captured and indexed,and the performance of the emulated SN can be well analyzed and evaluated.This architecture comprises three components,namely capture layer,storage layer and analysis layer.Analytic Hierarchy Process(AHP)and several analysis methods are adopted to evaluate the network performance comprehensively.In the implementation of the proposed architecture,configuration optimization and parallel processing are applied to handle large amount of high-speed network traffic.Finally,experiment results through the analysis system exhibits the effectiveness of the proposed architecture.展开更多
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
This paper investigates the performability of hierarchical Wireless Networked Control Systems (WNCS). The WNCS studied can operate in two modes: passive supervisor and active supervisor. It is first shown that the Mar...This paper investigates the performability of hierarchical Wireless Networked Control Systems (WNCS). The WNCS studied can operate in two modes: passive supervisor and active supervisor. It is first shown that the Markov models for both modes are identical. Performability models are then developed and a case study shows how to use these models to help make design decisions. More specifically, it is observed that the performability of a passive supervisor system increases in time while that of an active supervisor system decreases in time.展开更多
基金supported by the National Nature Science Foundation of China under Grant Nos.61233004,61221003,61074061,61374109,61104091the National Basic Research Program of China (973 Program) under Grant No.2013CB035500+1 种基金partly sponsored by the International Cooperation Program of Shanghai Science and Technology Commission under Grant No.12230709600the Higher Education Research Fund for the Doctoral Program of China under Grant No.20120073130006
文摘This paper provides preliminary results on performance limitations for a class of discrete time Kleinman control systems whose open loop poles lie strictly outside the unit circle. By exploiting the properties of the Kleinman controllers and using of Mgebraic Riccati equation (ARE), the relationship between total control energy of Kleinman control systems and the minimum energy needed to stabilize the open-loop systems is revealed. The result reflects how the horizon length of Kleinman controllers affects the performance of the closed-loop systems and quantifies how close the performance of Kleinman control systems is to the minimum energy.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金supported by the Funds for Creative Research Groups of China(No.60821063)the State Key Program of National Natural Science of China(No.60534010)+3 种基金the National 973 Program of China(No.2009CB320604)the Funds of National Science of China(No.60674021,60804024)the 111 Project(No.B08015)the Funds of PhD program of MOE,China(No.20060145019)
文摘This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited communication channels). By taking the derivative character of network-induced delay into full consideration and defining new Lyapunov functions, linear matrix inequalities (LMIs)-based H-infinity performance optimization and controller design are presented for NCSs with limited communication channels. If there do not exist any constraints on the communication channels, the proposed design methods are also applicable. The merit of the proposed methods lies in their Jess conservativeness, which is achieved by avoiding the utilization of bounding inequalities for cross products of vectors. The simulation results illustrate the merit and effectiveness of the proposed H-infinity controller design for NCSs with limited communication channels.
基金supported by the Natural Science Foundation of Shanghai (Grant No.06ZR14131)the Key Lab Project of Shanghai(Grant No.08DZ2272400)the Excellent Discipline Head Plan Project of Shanghai (Grant No.08XD14018)
文摘In networked control system (NCS) where control loop is closed over communication network, limited data rate may deteriorate control performance even destabilize the control system. In this paper, performance analysis of a typical second-order control system with data rate constraints is conducted, and the concept of critical data rate (CDR) is presented. In order to find the CDR in NCS, an approximate searching method is proposed to guarantee acceptable control performance.
基金supported by Aerospace Science and Technology Innovation Fund of China (No. CASC2016)Six Talent Peaks Project in Jiangsu Province of China (KTHY025)+3 种基金Funding of Jiangsu Innovation Program for Graduate Educationthe National Natural Science Foundation of China (Nos. 61403191, 11572149)the Funding of Jiangsu Innovation Program for Graduate Education of China (Nos. KYLX_0281, KYLX15_0318 and NZ2015205)the Fundamental Research Funds for the Central Universities of China
文摘An integrated approach that considers the performance limitations of tracking control systems for air-breathing hypersonic vehicles is proposed. First, a set of ascent trajectories is obtained as candidates for tracking control through a trajectory design method that considers the available acceleration. Second, the basic theory of performance limitations, which is adopted to calculate the limits on control performance through the trajectory, is integrated. The openloop dynamics of air-breathing hypersonic vehicles is responsible for these limits on the control system. Comprehensive specifications on stability, tracking accuracy, and robustness are derived, and the flight envelope with constraints and control specifications is identified. Simulation results suggest that trajectory design should consider restrictions on control performance to obtain reliable solutions.
基金This work is supported by the National Natural Science Foundation of China (No. 60528007, 10372002, 60274001, 60304003), the National KeyBasic Research and Development Program (No. 2002CB312200).
文摘A switched system approach is proposed to model networked control systems (NCSs) with communication constraints. This enables us to apply the rich theory of switched systems to analyzing such NCSs. Sufficient conditions are presented on the stabilization of NCSs. Stabilizing state/output feedback controllers can be constructed by using the feasible solutions of some linear matrix inequalities (LMIs). The merit of our proposed approach is that the behavior of the NCSs can be studied by considering switched system without augmenting the system. A simulation example is worked out to illustrate the effectiveness of the proposed approach.
基金Project (61304046) supported by the National Natural Science Funds for Young Scholar of ChinaProject (F201242) supported by Natural Science Foundation of Heilongjiang Province,China
文摘The H_∞ performance analysis and controller design for linear networked control systems(NCSs) are presented.The NCSs are considered a linear continuous system with time-varying interval input delay by assuming that the sensor is time-driven and the logic Zero-order-holder(ZOH) and controller are event-driven.Based on this model,the delay interval is divided into two equal subintervals for H_∞ performance analysis.An improved H_∞ stabilization condition is obtained in linear matrix inequalities(LMIs) framework by adequately considering the information about the bounds of the input delay to construct novel Lyapunov–Krasovskii functionals(LKFs).For the purpose of reducing the conservatism of the proposed results,the bounds of the LKFs differential cross terms are properly estimated without introducing any slack matrix variables.Moreover,the H_∞ controller is reasonably designed to guarantee the robust asymptotic stability for the linear NCSs with an H_∞ performance level γ.Numerical simulation examples are included to validate the reduced conservatism and effectiveness of our proposed method.
基金supported by the National Natural Science Foundation of China(61403344)
文摘Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H∞ performance problemsfor such networked control systems (NCSs) are equivalentlytransferred into the corresponding problems for switching systemswith arbitrary switching. Then, a sufficient condition for the existenceof the robust D-stabilizing controllers is derived in termsof linear matrix inequality (LMI), and the design method is alsopresented for the state feedback controllers which guarantee thatall the closed-loop poles remain inside the specified disk D(α,r)and the desired disturbance attenuation level. Finally, an illustrativeexample is given to demonstrate the effectiveness of the proposedresults.
基金Project (2015CB251403) supported by the National Key Basic Research Program of China(973)
文摘Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2-based in the HTHP in different running conditions.The results demonstrated the feasibility and reliability of M1 and M2 as new high-temperature refrigerants.Additionally,the exploration and analyses of the support vector machine(SVM)and back propagation(BP)neural network models were made to find a practical way to predict the performance of HTHP system.The results showed that SVM-Linear,SVM-RBF and BP models shared the similar ability to predict the heat capacity and power input with high accuracy.SVM-RBF demonstrated better stability for coefficient of performance prediction.Finally,the proposed SVM model was used to assess the potential of the M1 and M2.The results indicated that the HTHP system using M1 could produce heat at the temperature of 130°C with good performance.
基金supported by the Application Research of the Remote Sensing Technology on Global Energy Internet(JYYKJXM(2017)011)the National Natural Science Foundation of China(61671332,41701518,41771452,41771454,U1736206)+4 种基金National key R&D Project(2016YFE0202300)Hubei Province Technological Innovation Major Project(2017AAA123)Applied Basic Research Program of Wuhan City(2016010101010025)Basic Research Program of Shenzhen(JCYJ20170306171431656)the Fundamental Research Funds for the Central Universities(2042016gf0033)
文摘Software performance evaluation in multimedia communication systems is typically formulated into a multi-layered client-server queuing network(MLCSQN) problem. However, the existing analytical methods to MLCSQN model cannot provide satisfactory solution in terms of accuracy, convergence and consideration of interlocking effects. To this end, this paper proposes a heuristic solving method for MLCSQN model to boost the performance prediction of distributed multimedia software systems. The core concept of this method is referred to as the basic model, which can be further decomposed into two sub-models: client sub-model and server sub-model. The client sub-model calculates think time for server sub-model, and the server sub-model calculates waiting time for client sub-model. Using a breadthfirst traversal from leaf nodes to the root node and vice versa, the basic model is then adapted to MLCSQN, with net sub-models iteratively resolved. Similarly, the interlocking problem is effectively addressed with the help of the basic model. This analytical solver enjoys advantages of fast convergence, independence on specific average value analysis(MVA) methods and eliminating interlocking effects.Numerical experimental results on accuracy and computation efficiency verify its superiority over anchors.
文摘An integrated, efficient and effective performance management system, "dynamic performance management system", is presented, which covers the entire performance management process including measures design, analysis, and dynamic update. The analysis of performance measures using causal loop diagrams, qualitative inference and analytic network process is mainly discussed. A real world case study is carried out throughout the paper to explain how the framework works. A software tool for DPMS, Performance Analyzer, is also introduced.
文摘Performance of fixed relays in orthogonal frequency division multiple access (0FDMA) systems, especially the coverage and capacity performance at the cell edge, is evaluated in this paper. Two methods, theoretical analysis and calculation and Monte Carlo simulation, are used for the evaluations. By theoreti- cal analysis and calculation, frequency efficiency equation of a relay is introduced and numerical results are calculated. Monte Carlo simulation results also verify that the calculation method is reasonable. The evaluation shows that a relay can increase system performance to a certain level if it is designed appropriately, otherwise it will be harmful for the system performance, even to reduce it.
基金Sponsored by the National Natural Science Foundation of China(Grant No. 61073047)the Fundamental Research Funds for the Central Universities(Grant No.HEUCFT1007andHEUCF100607)the State Key Laboratory of High-End Server & Storage Technology(Grant No.2009HSSA08)
文摘Network storage provides high scalability, availability and flexibility for storage systems, and is widely applied to many fields. Particularly, I/O performance is of great significance. Its application is wide and expanding rapidly. I/O performance has already become the bottleneck of the whole performance of computer systems for a long time, and under the condition of the present computer technology, I/O performance optimization method looks especially important. In the paper, I/O performance model was analyzed based on the combination of quasi birth, death process and queuing model, and then solved the model. A number of important related performance indicators and the relationship between them were given. By the way of example, this method can show the I/O performance more accurately. Finally, we got some useful conclusions, which may be used to evaluate network storage performance, and are the basis of confirming I/O scheduling strategy.
基金This work was supported by the National Natural Science Foundation of China(No.60274009)and Specialized Research Fundfor the Doctoral Program of Higher Education(No.20020145007).
文摘Based on high order dynamic neural network, this paper presents the tracking problem for uncertain nonlinear composite system, which contains external disturbance, whose nonlinearities are assumed to be unknown. A smooth controller is designed to guarantee a uniform ultimate boundedness property for the tracking error and all other signals in the dosed loop. Certain measures are utilized to test its performance. No a priori knowledge of an upper bound on the “optimal” weight and modeling error is required; the weights of neural networks are updated on-line. Numerical simulations performed on a simple example illustrate and clarify the approach.
基金the National 863 High-Tech Project (863 -3 0 0 -0 2 -0 9-99) and Key Research Project of Hubei Province(991P110 )
文摘A system designed for supporting the network performance analysis and forecast effort is presented, based on the combination of offline network analysis and online real-time performance forecast. The off-line analysis will perform analysis of specific network node performance, correlation analysis of relative network nodes performance and evolutionary mathematical modeling of long-term network performance measurements. The online real-time network performance forecast will be based on one so-called hybrid prediction modeling approach for short-term network, performance prediction and trend analysis. Based on the module design, the system proposed has good intelligence, scalability and self-adaptability, which will offer highly effective network performance analysis and forecast tools for network managers, and is one ideal support platform for network performance analysis and forecast effort.
文摘The whole performance of the networked control system (NCSs) depends on two interaction factors, namely the quality of control performance (QoP) and quality of network service (QoS). So, to optimize the whole perfor-mance of NCSs, the problem of guaranteeing QoP and QoS plays an important role in the design of NCSs. However, up to now, little work has been done in this field. In this paper, a synthesizing control model of NCSs to guarantee QoP and QoS is proposed, and a feasible condition of optimizing whole performance of NCSs is also suggested. Finally, the simulation results show that the proposed model is effective.
基金the National Key Research and Development Program of China(2020YFB1804800)the National Natural Science Foundation of China(No.62071270).
文摘Providing alternative PNT service to GNSS-challenged users will be an important function of next-generation NGSO broadband satellite communication systems.Herein,a packet-based PNT service architecture in NGSO broadband systems is proposed in which a primary satellite and selected assistant satellites work together to provide PNT service to requesting users.Its positioning performance bounds are mathematically formulated by rigorously analyzing the bounds constrained by different waveforms.Simulations are conducted on different configurations of Walker Delta MEO constellations and Walker Star LEO constellations for corroboration,revealing the following:(1)Both MEO and LEO constellations achieve sub-meter-level positioning precision given enough satellites.(2)Compared to the GNSS Doppler-based velocity estimation method,the position advance based velocity estimation algorithm is more precise and applicable to the PNT service in NGSO broadband systems.(3)To provide PNT service to users in GNSS-challenged environments,the primary and each assistant satellite need only∼0.1‰of the time of one downlink beam.
基金supported by the National Natural Science Foundation of China under Grant 62131012the Fundamental Research Funds for the Central Universities under Grant 021014380187。
文摘Emulation platforms are critical for evaluation and verification in the research of networking technologies and protocols for space networks(SN).High fidelity emulating technologies have been extensively studied for SN in earlier work,while little emphasis has been placed on the performance evaluation part.In this paper,the design of a network performance analysis architecture is presented,with which high-speed network traffic can be captured and indexed,and the performance of the emulated SN can be well analyzed and evaluated.This architecture comprises three components,namely capture layer,storage layer and analysis layer.Analytic Hierarchy Process(AHP)and several analysis methods are adopted to evaluate the network performance comprehensively.In the implementation of the proposed architecture,configuration optimization and parallel processing are applied to handle large amount of high-speed network traffic.Finally,experiment results through the analysis system exhibits the effectiveness of the proposed architecture.
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
文摘This paper investigates the performability of hierarchical Wireless Networked Control Systems (WNCS). The WNCS studied can operate in two modes: passive supervisor and active supervisor. It is first shown that the Markov models for both modes are identical. Performability models are then developed and a case study shows how to use these models to help make design decisions. More specifically, it is observed that the performability of a passive supervisor system increases in time while that of an active supervisor system decreases in time.