As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Informatio...As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Information-Centric Networking(ICN)came into being.From a technical point of view,ICN is a promising future network architecture.Researching and customizing a reasonable pricing mechanism plays a positive role in promoting the deployment of ICN.The current research on ICN pricing mechanism is focused on paid content.Therefore,we study an ICN pricing model for free content,which uses game theory based on Nash equilibrium to analysis.In this work,advertisers are considered,and an advertiser model is established to describe the economic interaction between advertisers and ICN entities.This solution can formulate the best pricing strategy for all ICN entities and maximize the benefits of each entity.Our extensive analysis and numerical results show that the proposed pricing framework is significantly better than existing solutions when it comes to free content.展开更多
The basic function of the Internet is to delivery data(what) to serve the needs of all applications. IP names the attachment points(where) to facilitate ubiquitous interconnectivity as the current way to deliver data....The basic function of the Internet is to delivery data(what) to serve the needs of all applications. IP names the attachment points(where) to facilitate ubiquitous interconnectivity as the current way to deliver data. The fundamental mismatch between data delivery and naming attachment points leads to a lot of challenges, e.g., mapping from data name to IP address, handling dynamics of underlying topology, scaling up the data distribution, and securing communication, etc. Informationcentric networking(ICN) is proposed to shift the focus of communication paradigm from where to what, by making the named data the first-class citizen in the network, The basic consensus of ICN is to name the data independent from its container(space dimension) and session(time dimension), which breaks the limitation of point-to-point IP semantic. It scales up data distribution by utilizing available resources, and facilitates communication to fit diverse connectivity and heterogeneous networks. However, there are only a few consensuses on the detailed design of ICN, and quite a few different ICN architectures are proposed. This paper reveals the rationales of ICN from the perspective of the Internet evolution, surveys different design choices, and discusses on two debatable topics in ICN, i.e.,self-certifying versus hierarchical names, and edge versus pervasive caching. We hope this survey helps clarify some mis-understandings on ICN and achieve more consensuses.展开更多
Information-centric networking(ICN) aims to improve the efficiency of content delivery and reduce the redundancy of data transmission by caching contents in network nodes. An important issue is to design caching metho...Information-centric networking(ICN) aims to improve the efficiency of content delivery and reduce the redundancy of data transmission by caching contents in network nodes. An important issue is to design caching methods with better cache hit rate and achieve allocating on-demand. Therefore, an in-network caching scheduling scheme for ICN was designed, distinguishing different kinds of contents and dynamically allocating the cache size on-demand. First discussing what was appropriated to be cached in nodes, and then a classification about the contents could be cached was proposed. Furthermore, we used AHP to weight different contents classes through analyzing users' behavior. And a distributed control process was built, to achieve differentiated caching resource allocation and management. The designed scheme not only avoids the waste of caching resource, but also further enhances the cache availability. Finally, the simulation results are illustrated to show that our method has the superior performance in the aspects of server hit rate and convergence.展开更多
Information-Centric Networking (ICN) is an innovative paradigm for the future internet architecture, which addresses IP network limitations in supporting content distribution and information access by decoupling conte...Information-Centric Networking (ICN) is an innovative paradigm for the future internet architecture, which addresses IP network limitations in supporting content distribution and information access by decoupling content from hosts and providing the ability to retrieve a content object by its name (identifier), rather than its storage location (IP address). Name resolution and routing is critical for content retrieval in ICN networks. In this research, we perform a comparative study of two widely used classes of ICN name resolution and routing schemes, namely flooding and Distributed Hash Table (DHT). We consider the flooding-based routing in Content-Centric Networks due to its wide acceptance. For the DHT scheme, we design a multi-level DHT that takes into account the underlying network topology and uses name aggregation to further reduce control overhead and improve network efficiency. Then, we compare the characteristics and performance of these two classes of name resolution and routing through extensive simulations. The evaluation results show that the performances of these two approaches are reliant on several factors, including network size, content location dynamics, and content popularity. Our study reveals insights into the design tradeoffs and offers guidelines for design strategies.展开更多
The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the info...The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the information-centric network(ICN)paradigm offers hope for a solution by emphasizing content retrieval by name instead of location.If 5G networks are to meet the expected data demand surge from expanded connectivity and Internet of Things(IoT)devices,then effective caching solutions will be required tomaximize network throughput andminimize the use of resources.Hence,an ICN-based Cooperative Caching(ICN-CoC)technique has been used to select a cache by considering cache position,content attractiveness,and rate prediction.The findings show that utilizing our suggested approach improves caching regarding the Cache Hit Ratio(CHR)of 84.3%,Average Hop Minimization Ratio(AHMR)of 89.5%,and Mean Access Latency(MAL)of 0.4 s.Within a framework,it suggests improved caching strategies to handle the difficulty of effectively controlling data consumption in 5G networks.These improvements aim to make the network run more smoothly by enhancing content delivery,decreasing latency,and relieving congestion.By improving 5G communication systems’capacity tomanage the demands faced by modern data-centric applications,the research ultimately aids in advancement.展开更多
Information-Centric Networking(ICN), an alternative architecture to the current Internet infrastructure, focuses on the distribution and retrieval of content by employing caches in a network to reduce network traffic....Information-Centric Networking(ICN), an alternative architecture to the current Internet infrastructure, focuses on the distribution and retrieval of content by employing caches in a network to reduce network traffic. The employment of caches may be accomplished using graph-based and content-based criteria such as the position of a node in a network and content popularity. The contribution of this paper lies on the characterization of content popularity for on-path in-network caching. To this end, four dynamic approaches for identifying content popularity are evaluated via simulations. Content popularity may be determined per chunk or per object, calculated by the number of requests for a content against the sum of requests or the maximum number of requests. Based on the results, chunk-based approaches provide 23% more accurate content popularity calculations than object-based approaches. In addition, approaches that are based on the comparison of a content against the maximum number of requests have been shown to be more accurate than the alternatives.展开更多
The contribution rate of equipment system-of-systems architecture(ESoSA)is an important index to evaluate the equipment update,development,and architecture optimization.Since the traditional ESoSA contribution rate ev...The contribution rate of equipment system-of-systems architecture(ESoSA)is an important index to evaluate the equipment update,development,and architecture optimization.Since the traditional ESoSA contribution rate evaluation method does not make full use of the fuzzy information and uncertain information in the equipment system-of-systems(ESoS),and the Bayesian network is an effective tool to solve the uncertain information,a new ESoSA contribution rate evaluation method based on the fuzzy Bayesian network(FBN)is proposed.Firstly,based on the operation loop theory,an ESoSA is constructed considering three aspects:reconnaissance equipment,decision equipment,and strike equipment.Next,the fuzzy set theory is introduced to construct the FBN of ESoSA to deal with fuzzy information and uncertain information.Furthermore,the fuzzy importance index of the root node of the FBN is used to calculate the contribution rate of the ESoSA,and the ESoSA contribution rate evaluation model based on the root node fuzzy importance is established.Finally,the feasibility and rationality of this method are validated via an empirical case study of aviation ESoSA.Compared with traditional methods,the evaluation method based on FBN takes various failure states of equipment into consideration,is free of acquiring accurate probability of traditional equipment failure,and models the uncertainty of the relationship between equipment.The proposed method not only supplements and improves the ESoSA contribution rate assessment method,but also broadens the application scope of the Bayesian network.展开更多
The recent evolution of the Internet towards "Information-centric" transfer modes has renewed the interest in exploiting proxies to enhance seamless mobility. In this work, we focus on the case of multiple l...The recent evolution of the Internet towards "Information-centric" transfer modes has renewed the interest in exploiting proxies to enhance seamless mobility. In this work, we focus on the case of multiple levels of proxies in ICN architectures, in which content requests from mobile subscribers and the corresponding items are proactively cached to these proxies at different levels. Specifically, we present a multiple-level proactive caching model that selects the appropriate subset of proxies at different levels and supports distributed online decision procedures in terms of the tradeoff between delay and cache cost. We show via extensive simulations the reduction of up to 31.63% in the total cost relative to Full Caching, in which caching in all 1-level neighbor proxies is performed, and up to 84.21% relative to No Caching, in which no caching is used. Moreover, the proposed model outperforms other approaches with a flat cache structure in terms of the total cost.展开更多
Publish/subscribe(pub/sub) paradigm is the main communication model for Information-Centric Network(ICN) proposals.A key issue for pub/sub system is how to route the content objects to the correct subscribers,and ICN ...Publish/subscribe(pub/sub) paradigm is the main communication model for Information-Centric Network(ICN) proposals.A key issue for pub/sub system is how to route the content objects to the correct subscribers,and ICN is no exception.ICN network would be divided into core domain and many edge domains as today's internet does.HHR(Hierarchy Hybrid Routing scheme) is presented for ICN:A Chord-like routing scheme is used in core domain,while edge domains routing structure can be classified into three categories,Local Routing(LR),Delivery of Local Publication to Core domain(DLPC),and Remote Publication Routing into edge domain(RPR).LR can be decided by each edge domain,which determined by many factors,such as locality characteristic for pub/sub information and local policies.A hierarchical routing algorithm is proposed to solve DLPC and RPR simultaneously.Simulation results demonstrate that HHR can be fast deployed,and can be applied in large scale network or dynamic subscription environment.展开更多
The current Internet is based on host-centric networking, and a user needs to know the host address before reaching a data target in the network. The new architecture of information-centric networking (ICN) facilitate...The current Internet is based on host-centric networking, and a user needs to know the host address before reaching a data target in the network. The new architecture of information-centric networking (ICN) facilitates users to locate data targets by giving their data names without any information about host addresses. In-network caching is one of the prominent features in ICN, which allows network routers to cache data contents. In this paper, we emphasize the management of in-network cache storage, and this includes the mechanisms of cache replacement and cache replication. A new cost function is then proposed to evaluate each cache content and the least valuable content is evicted when cache is full. To increase cache utilization, a cooperative caching policy among neighboring routers is proposed. The proper network locations to cache data contents are also discussed in the paper. Experimental results show the superiority of the proposed caching policy than some traditional caching polices.展开更多
As a named data-based clean-slate future Internet architecture,Content-Centric Networking(CCN)uses entirely different protocols and communication patterns from the host-to-host IP network.In CCN,communication is wholl...As a named data-based clean-slate future Internet architecture,Content-Centric Networking(CCN)uses entirely different protocols and communication patterns from the host-to-host IP network.In CCN,communication is wholly driven by the data consumer.Consumers must send Interest packets with the content name and not by the host’s network address.Its nature of in-network caching,Interest packets aggregation and hop-byhop communication poses unique challenges to provision of Internet applications,where traditional IP network no long works well.This paper presents a comprehensive survey of state-of-the-art application research activities related to CCN architecture.Our main aims in this survey are(a)to identify the advantages and drawbacks of CCN architectures for application provisioning;(b)to discuss the challenges and opportunities regarding service provisioning in CCN architectures;and(c)to further encourage deeper thinking about design principles for future Internet architectures from the perspective of upper-layer applications.展开更多
In-network caching and Interest packets aggregation are two important features of Content-Centric Networking(CCN).CCN routers can directly respond to the Interest request by Content Store(CS)and aggregate the same Int...In-network caching and Interest packets aggregation are two important features of Content-Centric Networking(CCN).CCN routers can directly respond to the Interest request by Content Store(CS)and aggregate the same Interest packets by Pending Interest Table(PIT).In this way,most popular content requests will not reach the origin content server.Thus,content providers will be unaware of the actual usages of their contents in network.This new network paradigm presents content providers with unprecedented challenge.It will bring a great impact on existing mature business model of content providers,such as advertising revenue model based on hits amount.To leverage the advantages of CCN and the realistic business needs of content providers,we explore the hits-based content provisioning mechanism in CCN.The proposed approaches can avoid the unprecedented impact on content providers' existing business model and promote content providers to embrace the real deployment of CCN network.展开更多
Distribution feeder microgrid(DFM)built based on existing distributed feeder(DF),is a promising solution for modern microgrid.DFM contains a large number of heterogeneous devices that generate heavy network traffice a...Distribution feeder microgrid(DFM)built based on existing distributed feeder(DF),is a promising solution for modern microgrid.DFM contains a large number of heterogeneous devices that generate heavy network traffice and require a low data delivery latency.The information-centric networking(ICN)paradigm has shown a great potential to address the communication requirements of smart grid.However,the integration of advanced information and communication technologies with DFM make it vulnerable to cyber attacks.Adequate authentication of grid devices is essential for preventing unauthorized accesses to the grid network and defending against cyber attacks.In this paper,we propose a new lightweight anonymous device authentication scheme for DFM supported by named data networking(NDN),a representative implementation of ICN.We perform a security analysis to show that the proposed scheme can provide security features such as mutual authentication,session key agreement,defending against various cyber attacks,anonymity,and resilience against device capture attack.The security of the proposed scheme is also formally verified using the popular AVISPA(Automated Validation of Internet Security Protocols and Applications)tool.The computational and communication costs of the proposed scheme are evaluated.Our results demonstrate that the proposed scheme achieves significantly lower computational,communication and energy costs than other state-of-the-art schemes.展开更多
To ensure the extreme performances of the new 6G services,applications will be deployed at deep edge,resulting in a serious challenge of distributed application addressing.This paper traces back the latest development...To ensure the extreme performances of the new 6G services,applications will be deployed at deep edge,resulting in a serious challenge of distributed application addressing.This paper traces back the latest development of mobile network application addressing,analyzes two novel addressing methods in carrier network,and puts forward a 6G endogenous application addressing scheme by integrating some of their essence into the 6G network architecture,combining the new 6G capabilities of computing&network convergence,endogenous intelligence,and communication-sensing integration.This paper further illustrates how that the proposed method works in 6G networks and gives preliminary experimental verification.展开更多
Information-centric satellite networks play a crucial role in remote sensing applications,particularly in the transmission of remote sensing images.However,the occurrence of burst traffic poses significant challenges ...Information-centric satellite networks play a crucial role in remote sensing applications,particularly in the transmission of remote sensing images.However,the occurrence of burst traffic poses significant challenges in meeting the increased bandwidth demands.Traditional content delivery networks are ill-equipped to handle such bursts due to their pre-deployed content.In this paper,we propose an optimal replication strategy for mitigating burst traffic in information-centric satellite networks,specifically focusing on the transmission of remote sensing images.Our strategy involves selecting the most optimal replication delivery satellite node when multiple users subscribe to the same remote sensing content within a short time,effectively reducing network transmission data and preventing throughput degradation caused by burst traffic expansion.We formulate the content delivery process as a multi-objective optimization problem and apply Markov decision processes to determine the optimal value for burst traffic reduction.To address these challenges,we leverage federated reinforcement learning techniques.Additionally,we use bloom filters with subdivision and data identification methods to enable rapid retrieval and encoding of remote sensing images.Through software-based simulations using a low Earth orbit satellite constellation,we validate the effectiveness of our proposed strategy,achieving a significant 17%reduction in the average delivery delay.This paper offers valuable insights into efficient content delivery in satellite networks,specifically targeting the transmission of remote sensing images,and presents a promising approach to mitigate burst traffic challenges in information-centric environments.展开更多
Big data has a strong demand for a network infrastructure with the capability to support data sharing and retrieval efficiently. Information-centric networking (ICN) is an emerging approach to satisfy this demand, w...Big data has a strong demand for a network infrastructure with the capability to support data sharing and retrieval efficiently. Information-centric networking (ICN) is an emerging approach to satisfy this demand, where big data is cached ubiquitously in the network and retrieved using data names. However, existing authentication and authorization schemes rely mostly on centralized servers to provide certification and mediation services for data retrieval. This causes considerable traffic overhead for the secure distributed sharing of data. To solve this problem, we employ identity-based cryptography (IBC) to propose a Distributed Authentication and Authorization Scheme (DAAS), where an identity-based signature (IBS) is used to achieve distributed verifications of the identities of publishers and users. Moreover, Ciphertext-Policy Attribnte-based encryption (CP-ABE) is used to enable the distributed and fine-grained authorization. DAAS consists of three phases: initialization, secure data publication, and secure data retrieval, which seamlessly integrate authentication and authorization with the in- terest/data communication paradigm in ICN. In particular, we propose trustworthy registration and Network Operator and Authority Manifest (NOAM) dissemination to provide initial secure registration and enable efficient authentication for global data retrieval. Meanwhile, Attribute Manifest (AM) distribution coupled with automatic attribute update is proposed to reduce the cost of attribute retrieval. We examine the performance of the proposed DAAS, which shows that it can achieve a lower bandwidth cost than existing schemes.展开更多
One of the challenges of Informationcentric Networking(ICN)is finding the optimal location for caching content and processing users’requests.In this paper,we address this challenge by leveraging Software-defined Netw...One of the challenges of Informationcentric Networking(ICN)is finding the optimal location for caching content and processing users’requests.In this paper,we address this challenge by leveraging Software-defined Networking(SDN)for efficient ICN management.To achieve this,we formulate the problem as a mixed-integer nonlinear programming(MINLP)model,incorporating caching,routing,and load balancing decisions.We explore two distinct scenarios to tackle the problem.Firstly,we solve the problem in an offline mode using the GAMS environment,assuming a stable network state to demonstrate the superior performance of the cacheenabled network compared to non-cache networks.Subsequently,we investigate the problem in an online mode where the network state dynamically changes over time.Given the computational complexity associated with MINLP,we propose the software-defined caching,routing,and load balancing(SDCRL)algorithm as an efficient and scalable solution.Our evaluation demonstrates that the SDCRL algorithm significantly reduces computational time while maintaining results that closely resemble those achieved by GAMS.展开更多
In-network caching is a fundamental mechanism advocated by information-centric networks (ICNs) for efficient content delivery. However, this new mechanism also brings serious privacy risks due to cache snooping atta...In-network caching is a fundamental mechanism advocated by information-centric networks (ICNs) for efficient content delivery. However, this new mechanism also brings serious privacy risks due to cache snooping attacks. One effective solution to this problem is random-cache, where the cache in a router randomly mimics a cache hit or a cache miss for each content request/probe. In this paper, we investigate the effectiveness of using multiple random-caches to protect cache privacy in a multi-path ICN. We propose models for characterizing the privacy of multi-path ICNs with random-caches, and analyze two different attack scenarios: 1) prefix-based attacks and 2) suffix-based attacks. Both homogeneous and heterogeneous caches are considered. Our analysis shows that in a multi-path ICN an adversary can potentially gain more privacy information by adopting prefix-based attacks. Furthermore, heterogeneous caches provide much better privacy protection than homogeneous ones under both attacks. The effect of different parameters on the privacy of multi-path random-caches is further investigated, and the comparison with its single-path counterpart is carried out based on numerical evaluations. The analysis and results in this paper provide insights in designing and evaluating multi-path ICNs when we take privacy into consideration.展开更多
This paper proposes the Content Diffusion Model(CDM)for modeling the content diffusion process in information-centric networking(ICN).CDM is inspired by the epidemic model and it provides a method of theoretical quant...This paper proposes the Content Diffusion Model(CDM)for modeling the content diffusion process in information-centric networking(ICN).CDM is inspired by the epidemic model and it provides a method of theoretical quantitative analysis for the content diffusion process in ICN.Specifically,CDM introduces the key functions to formalize the key factors that influence the content diffusion process,and thus it can construct the model via a simple but efficient way.Further,we derive CDM by using different combinations of those key factors and put them into several typical ICN scenarios,to analyze the characteristics during the diffusion process such as diffusion speed,diffusion scope,average fetching hops,changing and final state,which can greatly help to analyze the network performance and application design.A series of experiments are conducted to evaluate the efficacy and accuracy of CDM.The results show that CDM can accurately illustrate and model the content diffusion process in ICN.展开更多
为了克服现有Internet架构存在的众所周知的缺点,未来网络的研究成为热点.ICN(information-centricnetworking)在众多新架构中正逐渐被公认为最有前途的方案.它把传输的内容缓存到沿途的节点.高效的缓存机制是它的一个重要研究方面.为此...为了克服现有Internet架构存在的众所周知的缺点,未来网络的研究成为热点.ICN(information-centricnetworking)在众多新架构中正逐渐被公认为最有前途的方案.它把传输的内容缓存到沿途的节点.高效的缓存机制是它的一个重要研究方面.为此,提出了一种在分布式缓存机制中嵌入中心式缓存决策的机制(content-awareplacement,discovery and replacement,简称APDR),它把内容的放置、发现、替换统一起来考虑,实现内容的有序缓存,提高网络的性能.APDR的主要思想是:Interest报文除了携带对内容的请求以外,还收集沿途各节点对该内容的潜在需求、空闲缓存等信息,使得Interest的汇聚点和目的地节点可以据此计算出一个缓存方案,并把该方案附加在Data报文上,通知返程途中的某些节点缓存该内容并设置指定的缓存时间.在多种实验条件下对APDR进行了仿真验证,结果表明,APDR可以改善网络性能,包括缓存命中率、接入代价、替换数量、转发效率以及缓存鲁棒性等;而且APDR的额外开销也不大.展开更多
基金supported by the Key R&D Program of Anhui Province in 2020 under Grant No.202004a05020078China Environment for Network Innovations(CENI)under Grant No.2016-000052-73-01-000515.
文摘As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Information-Centric Networking(ICN)came into being.From a technical point of view,ICN is a promising future network architecture.Researching and customizing a reasonable pricing mechanism plays a positive role in promoting the deployment of ICN.The current research on ICN pricing mechanism is focused on paid content.Therefore,we study an ICN pricing model for free content,which uses game theory based on Nash equilibrium to analysis.In this work,advertisers are considered,and an advertiser model is established to describe the economic interaction between advertisers and ICN entities.This solution can formulate the best pricing strategy for all ICN entities and maximize the benefits of each entity.Our extensive analysis and numerical results show that the proposed pricing framework is significantly better than existing solutions when it comes to free content.
基金supported by the National High-tech R&D Program("863"Program)of China(No.2013AA013505)the National Science Foundation of China(No.61472213)State Scholarship Fund from China Scholarship Council(No.201406210270)
文摘The basic function of the Internet is to delivery data(what) to serve the needs of all applications. IP names the attachment points(where) to facilitate ubiquitous interconnectivity as the current way to deliver data. The fundamental mismatch between data delivery and naming attachment points leads to a lot of challenges, e.g., mapping from data name to IP address, handling dynamics of underlying topology, scaling up the data distribution, and securing communication, etc. Informationcentric networking(ICN) is proposed to shift the focus of communication paradigm from where to what, by making the named data the first-class citizen in the network, The basic consensus of ICN is to name the data independent from its container(space dimension) and session(time dimension), which breaks the limitation of point-to-point IP semantic. It scales up data distribution by utilizing available resources, and facilitates communication to fit diverse connectivity and heterogeneous networks. However, there are only a few consensuses on the detailed design of ICN, and quite a few different ICN architectures are proposed. This paper reveals the rationales of ICN from the perspective of the Internet evolution, surveys different design choices, and discusses on two debatable topics in ICN, i.e.,self-certifying versus hierarchical names, and edge versus pervasive caching. We hope this survey helps clarify some mis-understandings on ICN and achieve more consensuses.
基金supported in part by The National High Technology Research and Development Program of China (863 Program) under Grant No. 2015AA016101The National Natural Science Foundation of China under Grant No. 61501042+1 种基金Beijing Nova Program under Grant No. Z151100000315078BUPT Special Program for Youth Scientific Research Innovation under Grant No. 2015RC10
文摘Information-centric networking(ICN) aims to improve the efficiency of content delivery and reduce the redundancy of data transmission by caching contents in network nodes. An important issue is to design caching methods with better cache hit rate and achieve allocating on-demand. Therefore, an in-network caching scheduling scheme for ICN was designed, distinguishing different kinds of contents and dynamically allocating the cache size on-demand. First discussing what was appropriated to be cached in nodes, and then a classification about the contents could be cached was proposed. Furthermore, we used AHP to weight different contents classes through analyzing users' behavior. And a distributed control process was built, to achieve differentiated caching resource allocation and management. The designed scheme not only avoids the waste of caching resource, but also further enhances the cache availability. Finally, the simulation results are illustrated to show that our method has the superior performance in the aspects of server hit rate and convergence.
文摘Information-Centric Networking (ICN) is an innovative paradigm for the future internet architecture, which addresses IP network limitations in supporting content distribution and information access by decoupling content from hosts and providing the ability to retrieve a content object by its name (identifier), rather than its storage location (IP address). Name resolution and routing is critical for content retrieval in ICN networks. In this research, we perform a comparative study of two widely used classes of ICN name resolution and routing schemes, namely flooding and Distributed Hash Table (DHT). We consider the flooding-based routing in Content-Centric Networks due to its wide acceptance. For the DHT scheme, we design a multi-level DHT that takes into account the underlying network topology and uses name aggregation to further reduce control overhead and improve network efficiency. Then, we compare the characteristics and performance of these two classes of name resolution and routing through extensive simulations. The evaluation results show that the performances of these two approaches are reliant on several factors, including network size, content location dynamics, and content popularity. Our study reveals insights into the design tradeoffs and offers guidelines for design strategies.
基金New Brunswick Innovation Foundation(NBIF)for the financial support of the global project.
文摘The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the information-centric network(ICN)paradigm offers hope for a solution by emphasizing content retrieval by name instead of location.If 5G networks are to meet the expected data demand surge from expanded connectivity and Internet of Things(IoT)devices,then effective caching solutions will be required tomaximize network throughput andminimize the use of resources.Hence,an ICN-based Cooperative Caching(ICN-CoC)technique has been used to select a cache by considering cache position,content attractiveness,and rate prediction.The findings show that utilizing our suggested approach improves caching regarding the Cache Hit Ratio(CHR)of 84.3%,Average Hop Minimization Ratio(AHMR)of 89.5%,and Mean Access Latency(MAL)of 0.4 s.Within a framework,it suggests improved caching strategies to handle the difficulty of effectively controlling data consumption in 5G networks.These improvements aim to make the network run more smoothly by enhancing content delivery,decreasing latency,and relieving congestion.By improving 5G communication systems’capacity tomanage the demands faced by modern data-centric applications,the research ultimately aids in advancement.
基金funded by the Higher Education Authority (HEA)co-funded under the European Regional Development Fund (ERDF)
文摘Information-Centric Networking(ICN), an alternative architecture to the current Internet infrastructure, focuses on the distribution and retrieval of content by employing caches in a network to reduce network traffic. The employment of caches may be accomplished using graph-based and content-based criteria such as the position of a node in a network and content popularity. The contribution of this paper lies on the characterization of content popularity for on-path in-network caching. To this end, four dynamic approaches for identifying content popularity are evaluated via simulations. Content popularity may be determined per chunk or per object, calculated by the number of requests for a content against the sum of requests or the maximum number of requests. Based on the results, chunk-based approaches provide 23% more accurate content popularity calculations than object-based approaches. In addition, approaches that are based on the comparison of a content against the maximum number of requests have been shown to be more accurate than the alternatives.
基金supported by the National Key Research and Development Project(2018YFB1700802)the National Natural Science Foundation of China(72071206)the Science and Technology Innovation Plan of Hunan Province(2020RC4046).
文摘The contribution rate of equipment system-of-systems architecture(ESoSA)is an important index to evaluate the equipment update,development,and architecture optimization.Since the traditional ESoSA contribution rate evaluation method does not make full use of the fuzzy information and uncertain information in the equipment system-of-systems(ESoS),and the Bayesian network is an effective tool to solve the uncertain information,a new ESoSA contribution rate evaluation method based on the fuzzy Bayesian network(FBN)is proposed.Firstly,based on the operation loop theory,an ESoSA is constructed considering three aspects:reconnaissance equipment,decision equipment,and strike equipment.Next,the fuzzy set theory is introduced to construct the FBN of ESoSA to deal with fuzzy information and uncertain information.Furthermore,the fuzzy importance index of the root node of the FBN is used to calculate the contribution rate of the ESoSA,and the ESoSA contribution rate evaluation model based on the root node fuzzy importance is established.Finally,the feasibility and rationality of this method are validated via an empirical case study of aviation ESoSA.Compared with traditional methods,the evaluation method based on FBN takes various failure states of equipment into consideration,is free of acquiring accurate probability of traditional equipment failure,and models the uncertainty of the relationship between equipment.The proposed method not only supplements and improves the ESoSA contribution rate assessment method,but also broadens the application scope of the Bayesian network.
基金supported by National Natural Science Foundation of China (Grant Nos. 61302078 and 61372108)National High-tech R&D Program of China (863 Program) (Grant Nos. 2011AA01A102)+1 种基金National S&T Major Project (Grant Nos. 2011ZX 03005-004-02)Beijing Higher Education Young Elite Teacher Project (Grant Nos. YETP0476)
文摘The recent evolution of the Internet towards "Information-centric" transfer modes has renewed the interest in exploiting proxies to enhance seamless mobility. In this work, we focus on the case of multiple levels of proxies in ICN architectures, in which content requests from mobile subscribers and the corresponding items are proactively cached to these proxies at different levels. Specifically, we present a multiple-level proactive caching model that selects the appropriate subset of proxies at different levels and supports distributed online decision procedures in terms of the tradeoff between delay and cache cost. We show via extensive simulations the reduction of up to 31.63% in the total cost relative to Full Caching, in which caching in all 1-level neighbor proxies is performed, and up to 84.21% relative to No Caching, in which no caching is used. Moreover, the proposed model outperforms other approaches with a flat cache structure in terms of the total cost.
基金supported by 973 Program(2013CB329103)NSFC Fund (61271165,61301153)Program for Changjiang Scholars and Innovative Research Team (PCSIRT) in University and the 111 Project B14039
文摘Publish/subscribe(pub/sub) paradigm is the main communication model for Information-Centric Network(ICN) proposals.A key issue for pub/sub system is how to route the content objects to the correct subscribers,and ICN is no exception.ICN network would be divided into core domain and many edge domains as today's internet does.HHR(Hierarchy Hybrid Routing scheme) is presented for ICN:A Chord-like routing scheme is used in core domain,while edge domains routing structure can be classified into three categories,Local Routing(LR),Delivery of Local Publication to Core domain(DLPC),and Remote Publication Routing into edge domain(RPR).LR can be decided by each edge domain,which determined by many factors,such as locality characteristic for pub/sub information and local policies.A hierarchical routing algorithm is proposed to solve DLPC and RPR simultaneously.Simulation results demonstrate that HHR can be fast deployed,and can be applied in large scale network or dynamic subscription environment.
文摘The current Internet is based on host-centric networking, and a user needs to know the host address before reaching a data target in the network. The new architecture of information-centric networking (ICN) facilitates users to locate data targets by giving their data names without any information about host addresses. In-network caching is one of the prominent features in ICN, which allows network routers to cache data contents. In this paper, we emphasize the management of in-network cache storage, and this includes the mechanisms of cache replacement and cache replication. A new cost function is then proposed to evaluate each cache content and the least valuable content is evicted when cache is full. To increase cache utilization, a cooperative caching policy among neighboring routers is proposed. The proper network locations to cache data contents are also discussed in the paper. Experimental results show the superiority of the proposed caching policy than some traditional caching polices.
基金supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61671081in part by the Funds for International Cooperation and Exchange of NSFC under Grant 61720106007+2 种基金in part by the 111 Project under Grant B18008in part by the Beijing Natural Science Foundation under Grant 4172042in part by the Fundamental Research Funds for the Central Universities under Grant 2018XKJC01
文摘As a named data-based clean-slate future Internet architecture,Content-Centric Networking(CCN)uses entirely different protocols and communication patterns from the host-to-host IP network.In CCN,communication is wholly driven by the data consumer.Consumers must send Interest packets with the content name and not by the host’s network address.Its nature of in-network caching,Interest packets aggregation and hop-byhop communication poses unique challenges to provision of Internet applications,where traditional IP network no long works well.This paper presents a comprehensive survey of state-of-the-art application research activities related to CCN architecture.Our main aims in this survey are(a)to identify the advantages and drawbacks of CCN architectures for application provisioning;(b)to discuss the challenges and opportunities regarding service provisioning in CCN architectures;and(c)to further encourage deeper thinking about design principles for future Internet architectures from the perspective of upper-layer applications.
基金This work was supported by National Key Basic Research Program of China (973 Program) under Grant No. 2012CB315802 National Natural Science Foundation of China under Grant No. 61171102 and No. 61132001 Prospective Research on Future Networks of Jiangsu Future Networks Innovation institute under Grant No. BY2013095-4-01. Beijing Nova Program under Grant No.2008B50 and Beijing Higher Education Young Elite Teacher Project under Grant No.YETP0478.
文摘In-network caching and Interest packets aggregation are two important features of Content-Centric Networking(CCN).CCN routers can directly respond to the Interest request by Content Store(CS)and aggregate the same Interest packets by Pending Interest Table(PIT).In this way,most popular content requests will not reach the origin content server.Thus,content providers will be unaware of the actual usages of their contents in network.This new network paradigm presents content providers with unprecedented challenge.It will bring a great impact on existing mature business model of content providers,such as advertising revenue model based on hits amount.To leverage the advantages of CCN and the realistic business needs of content providers,we explore the hits-based content provisioning mechanism in CCN.The proposed approaches can avoid the unprecedented impact on content providers' existing business model and promote content providers to embrace the real deployment of CCN network.
基金This material is based upon work funded by the National Science Foundation EPSCoR Cooperative Agreement OIA-1757207。
文摘Distribution feeder microgrid(DFM)built based on existing distributed feeder(DF),is a promising solution for modern microgrid.DFM contains a large number of heterogeneous devices that generate heavy network traffice and require a low data delivery latency.The information-centric networking(ICN)paradigm has shown a great potential to address the communication requirements of smart grid.However,the integration of advanced information and communication technologies with DFM make it vulnerable to cyber attacks.Adequate authentication of grid devices is essential for preventing unauthorized accesses to the grid network and defending against cyber attacks.In this paper,we propose a new lightweight anonymous device authentication scheme for DFM supported by named data networking(NDN),a representative implementation of ICN.We perform a security analysis to show that the proposed scheme can provide security features such as mutual authentication,session key agreement,defending against various cyber attacks,anonymity,and resilience against device capture attack.The security of the proposed scheme is also formally verified using the popular AVISPA(Automated Validation of Internet Security Protocols and Applications)tool.The computational and communication costs of the proposed scheme are evaluated.Our results demonstrate that the proposed scheme achieves significantly lower computational,communication and energy costs than other state-of-the-art schemes.
基金supported by the National Key R&D Program of China(Project Number:2022YFB2902100).
文摘To ensure the extreme performances of the new 6G services,applications will be deployed at deep edge,resulting in a serious challenge of distributed application addressing.This paper traces back the latest development of mobile network application addressing,analyzes two novel addressing methods in carrier network,and puts forward a 6G endogenous application addressing scheme by integrating some of their essence into the 6G network architecture,combining the new 6G capabilities of computing&network convergence,endogenous intelligence,and communication-sensing integration.This paper further illustrates how that the proposed method works in 6G networks and gives preliminary experimental verification.
基金Project supported by the National Natural Science Foundation of China(No.U21A20451)。
文摘Information-centric satellite networks play a crucial role in remote sensing applications,particularly in the transmission of remote sensing images.However,the occurrence of burst traffic poses significant challenges in meeting the increased bandwidth demands.Traditional content delivery networks are ill-equipped to handle such bursts due to their pre-deployed content.In this paper,we propose an optimal replication strategy for mitigating burst traffic in information-centric satellite networks,specifically focusing on the transmission of remote sensing images.Our strategy involves selecting the most optimal replication delivery satellite node when multiple users subscribe to the same remote sensing content within a short time,effectively reducing network transmission data and preventing throughput degradation caused by burst traffic expansion.We formulate the content delivery process as a multi-objective optimization problem and apply Markov decision processes to determine the optimal value for burst traffic reduction.To address these challenges,we leverage federated reinforcement learning techniques.Additionally,we use bloom filters with subdivision and data identification methods to enable rapid retrieval and encoding of remote sensing images.Through software-based simulations using a low Earth orbit satellite constellation,we validate the effectiveness of our proposed strategy,achieving a significant 17%reduction in the average delivery delay.This paper offers valuable insights into efficient content delivery in satellite networks,specifically targeting the transmission of remote sensing images,and presents a promising approach to mitigate burst traffic challenges in information-centric environments.
文摘Big data has a strong demand for a network infrastructure with the capability to support data sharing and retrieval efficiently. Information-centric networking (ICN) is an emerging approach to satisfy this demand, where big data is cached ubiquitously in the network and retrieved using data names. However, existing authentication and authorization schemes rely mostly on centralized servers to provide certification and mediation services for data retrieval. This causes considerable traffic overhead for the secure distributed sharing of data. To solve this problem, we employ identity-based cryptography (IBC) to propose a Distributed Authentication and Authorization Scheme (DAAS), where an identity-based signature (IBS) is used to achieve distributed verifications of the identities of publishers and users. Moreover, Ciphertext-Policy Attribnte-based encryption (CP-ABE) is used to enable the distributed and fine-grained authorization. DAAS consists of three phases: initialization, secure data publication, and secure data retrieval, which seamlessly integrate authentication and authorization with the in- terest/data communication paradigm in ICN. In particular, we propose trustworthy registration and Network Operator and Authority Manifest (NOAM) dissemination to provide initial secure registration and enable efficient authentication for global data retrieval. Meanwhile, Attribute Manifest (AM) distribution coupled with automatic attribute update is proposed to reduce the cost of attribute retrieval. We examine the performance of the proposed DAAS, which shows that it can achieve a lower bandwidth cost than existing schemes.
文摘One of the challenges of Informationcentric Networking(ICN)is finding the optimal location for caching content and processing users’requests.In this paper,we address this challenge by leveraging Software-defined Networking(SDN)for efficient ICN management.To achieve this,we formulate the problem as a mixed-integer nonlinear programming(MINLP)model,incorporating caching,routing,and load balancing decisions.We explore two distinct scenarios to tackle the problem.Firstly,we solve the problem in an offline mode using the GAMS environment,assuming a stable network state to demonstrate the superior performance of the cacheenabled network compared to non-cache networks.Subsequently,we investigate the problem in an online mode where the network state dynamically changes over time.Given the computational complexity associated with MINLP,we propose the software-defined caching,routing,and load balancing(SDCRL)algorithm as an efficient and scalable solution.Our evaluation demonstrates that the SDCRL algorithm significantly reduces computational time while maintaining results that closely resemble those achieved by GAMS.
基金The work was supported by the Young Scientists Fund of the National Natural Science Foundation of China under Grant No. 61502393 and the Aeronautical Science Foundation of China under Grant No. 2014ZD53049.
文摘In-network caching is a fundamental mechanism advocated by information-centric networks (ICNs) for efficient content delivery. However, this new mechanism also brings serious privacy risks due to cache snooping attacks. One effective solution to this problem is random-cache, where the cache in a router randomly mimics a cache hit or a cache miss for each content request/probe. In this paper, we investigate the effectiveness of using multiple random-caches to protect cache privacy in a multi-path ICN. We propose models for characterizing the privacy of multi-path ICNs with random-caches, and analyze two different attack scenarios: 1) prefix-based attacks and 2) suffix-based attacks. Both homogeneous and heterogeneous caches are considered. Our analysis shows that in a multi-path ICN an adversary can potentially gain more privacy information by adopting prefix-based attacks. Furthermore, heterogeneous caches provide much better privacy protection than homogeneous ones under both attacks. The effect of different parameters on the privacy of multi-path random-caches is further investigated, and the comparison with its single-path counterpart is carried out based on numerical evaluations. The analysis and results in this paper provide insights in designing and evaluating multi-path ICNs when we take privacy into consideration.
基金supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China(NSFC)under Grant No.61921003the National Natural Science Foundation of China under Grant Nos.61722201 and 61632008+1 种基金the Fund for International Cooperation and Exchange of NSFC under Grant No.61720106007the Fundamental Research Funds for the Central Universities of China under Grant No.2019RC40.
文摘This paper proposes the Content Diffusion Model(CDM)for modeling the content diffusion process in information-centric networking(ICN).CDM is inspired by the epidemic model and it provides a method of theoretical quantitative analysis for the content diffusion process in ICN.Specifically,CDM introduces the key functions to formalize the key factors that influence the content diffusion process,and thus it can construct the model via a simple but efficient way.Further,we derive CDM by using different combinations of those key factors and put them into several typical ICN scenarios,to analyze the characteristics during the diffusion process such as diffusion speed,diffusion scope,average fetching hops,changing and final state,which can greatly help to analyze the network performance and application design.A series of experiments are conducted to evaluate the efficacy and accuracy of CDM.The results show that CDM can accurately illustrate and model the content diffusion process in ICN.
文摘为了克服现有Internet架构存在的众所周知的缺点,未来网络的研究成为热点.ICN(information-centricnetworking)在众多新架构中正逐渐被公认为最有前途的方案.它把传输的内容缓存到沿途的节点.高效的缓存机制是它的一个重要研究方面.为此,提出了一种在分布式缓存机制中嵌入中心式缓存决策的机制(content-awareplacement,discovery and replacement,简称APDR),它把内容的放置、发现、替换统一起来考虑,实现内容的有序缓存,提高网络的性能.APDR的主要思想是:Interest报文除了携带对内容的请求以外,还收集沿途各节点对该内容的潜在需求、空闲缓存等信息,使得Interest的汇聚点和目的地节点可以据此计算出一个缓存方案,并把该方案附加在Data报文上,通知返程途中的某些节点缓存该内容并设置指定的缓存时间.在多种实验条件下对APDR进行了仿真验证,结果表明,APDR可以改善网络性能,包括缓存命中率、接入代价、替换数量、转发效率以及缓存鲁棒性等;而且APDR的额外开销也不大.