The FuTURE 4G Time Division Duplex (TDD) trial system uses 3.5 GHz carrier frequency and several crucial technologies including broadband Multiple Input Multiple Output (MIMO) and Orthogonal Frequency Division Multipl...The FuTURE 4G Time Division Duplex (TDD) trial system uses 3.5 GHz carrier frequency and several crucial technologies including broadband Multiple Input Multiple Output (MIMO) and Orthogonal Frequency Division Multiplexing (OFDM). These technologies challenge the link budget and networking analysis of the FuTURE 4G TDD trial network. This paper analyzes the practical 3.5 GHz propagation model and the link budget of Radio Frequency (RF) parameters of the trial system. Moreover,it introduces networking analysis and network planning of the trial system,which combines the field test results of the MIMO system. The FuTURE 4G TDD trial system and its trial network have been accomplished with successful checkup. The trial system fulfills all the requirements with two Access Points (AP) and three Mobile Terminals (MT),which supports multi-user,mobility,a high peak rate of 100 Mb/s,High-Definition TV (HDTV),high-speed data download,and Voice over IP (VoIP) services.展开更多
We propose a model of edge-coupled interdependent networks with directed dependency links(EINDDLs)and develop the theoretical analysis framework of this model based on the self-consistent probabilities method.The phas...We propose a model of edge-coupled interdependent networks with directed dependency links(EINDDLs)and develop the theoretical analysis framework of this model based on the self-consistent probabilities method.The phase transition behaviors and parameter thresholds of this model under random attacks are analyzed theoretically on both random regular(RR)networks and Erd¨os-Renyi(ER)networks,and computer simulations are performed to verify the results.In this EINDDL model,a fractionβof connectivity links within network B depends on network A and a fraction(1-β)of connectivity links within network A depends on network B.It is found that randomly removing a fraction(1-p)of connectivity links in network A at the initial state,network A exhibits different types of phase transitions(first order,second order and hybrid).Network B is rarely affected by cascading failure whenβis small,and network B will gradually converge from the first-order to the second-order phase transition asβincreases.We present the critical values ofβfor the phase change process of networks A and B,and give the critical values of p andβfor network B at the critical point of collapse.Furthermore,a cascading prevention strategy is proposed.The findings are of great significance for understanding the robustness of EINDDLs.展开更多
A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predicti...A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predictive controller (OGPC) and the functional link network (FLN) direct adaptive law. OGPC is a continuous-time nonlinear predictive control law. The FLN adaptive law is used to offset the unknown uncertainties and disturbances in a flight through the online learning. The learning process does not need any offline training phase. The stability analyses of the NHV close-loop system are provided and it is proved that the system error and the weight learning error are uniformly ultimately hounded. Simulation results show the satisfactory performance of the con- troller for the attitude tracking.展开更多
Biodiversity has become a terminology familiar to virtually every citizen in modern societies.It is said that ecology studies the economy of nature,and economy studies the ecology of humans;then measuring biodiversity...Biodiversity has become a terminology familiar to virtually every citizen in modern societies.It is said that ecology studies the economy of nature,and economy studies the ecology of humans;then measuring biodiversity should be similar with measuring national wealth.Indeed,there have been many parallels between ecology and economics,actually beyond analogies.For example,arguably the second most widely used biodiversity metric,Simpson(1949)’s diversity index,is a function of familiar Gini-index in economics.One of the biggest challenges has been the high“diversity”of diversity indexes due to their excessive“speciation”-there are so many indexes,similar to each country’s sovereign currency-leaving confused diversity practitioners in dilemma.In 1973,Hill introduced the concept of“numbers equivalent”,which is based on Renyi entropy and originated in economics,but possibly due to his abstruse interpretation of the concept,his message was not widely received by ecologists until nearly four decades later.What Hill suggested was similar to link the US dollar to gold at the rate of$35 per ounce under the Bretton Woods system.The Hill numbers now are considered most appropriate biodiversity metrics system,unifying Shannon,Simpson and other diversity indexes.Here,we approach to another paradigmatic shift-measuring biodiversity on ecological networks-demonstrated with animal gastrointestinal microbiomes representing four major invertebrate classes and all six vertebrate classes.The network diversity can reveal the diversity of species interactions,which is a necessary step for understanding the spatial and temporal structures and dynamics of biodiversity across environmental gradients.展开更多
The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link ...The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link network(FLN) control method for an NHV with dynamical thrust and parameter uncertainties.The approach devises a new partially-feedback-functional-link-network(PFFLN) adaptive law and combines it with the nonlinear generalized predictive control(NGPC) algorithm.The PFFLN is employed for approximating uncertainties in flight.Its weights are online tuned based on Lyapunov stability theorem for the first time.The learning process does not need any offline training phase.Additionally,a robust controller with an adaptive gain is designed to offset the approximation error.Finally,simulation results show a satisfactory performance for the NHV attitude tracking,and also illustrate the controller's robustness.展开更多
Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures...Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures.In this study,finite element analyses(FEM)and the hardening small strain(HSS)model were performed to investigate the deflection of the diaphragm wall in the soft clay layer induced by braced excavations.Different geometric and mechanical properties of the wall were investigated to study the deflection behavior of the wall in soft clays.Accordingly,1090 hypothetical cases were surveyed and simulated based on the HSS model and FEM to evaluate the wall deflection behavior.The results were then used to develop an intelligent model for predicting wall deflection using the functional linked neural network(FLNN)with different functional expansions and activation functions.Although the FLNN is a novel approach to predict wall deflection;however,in order to improve the accuracy of the FLNN model in predicting wall deflection,three swarm-based optimization algorithms,such as artificial bee colony(ABC),Harris’s hawk’s optimization(HHO),and hunger games search(HGS),were hybridized to the FLNN model to generate three novel intelligent models,namely ABC-FLNN,HHO-FLNN,HGS-FLNN.The results of the hybrid models were then compared with the basic FLNN and MLP models.They revealed that FLNN is a good solution for predicting wall deflection,and the application of different functional expansions and activation functions has a significant effect on the outcome predictions of the wall deflection.It is remarkably interesting that the performance of the FLNN model was better than the MLP model with a mean absolute error(MAE)of 19.971,root-mean-squared error(RMSE)of 24.574,and determination coefficient(R^(2))of 0.878.Meanwhile,the performance of the MLP model only obtained an MAE of 20.321,RMSE of 27.091,and R^(2)of 0.851.Furthermore,the results also indicated that the proposed hybrid models,i.e.,ABC-FLNN,HHO-FLNN,HGS-FLNN,yielded more superior performances than those of the FLNN and MLP models in terms of the prediction of deflection behavior of diaphragm walls with an MAE in the range of 11.877 to 12.239,RMSE in the range of 15.821 to 16.045,and R^(2)in the range of 0.949 to 0.951.They can be used as an alternative tool to simulate diaphragm wall deflections under different conditions with a high degree of accuracy.展开更多
The air cooler is an important equipment in the petroleum refining industry.Ammonium chloride(NH4 Cl)deposition-induced corrosion is one of its main failure forms.In this study,the ammonium salt crystallization temper...The air cooler is an important equipment in the petroleum refining industry.Ammonium chloride(NH4 Cl)deposition-induced corrosion is one of its main failure forms.In this study,the ammonium salt crystallization temperature is chosen as the key decision variable of NH4 Cl deposition-induced corrosion through in-depth mechanism research and experimental analysis.The functional link neural network(FLNN)is adopted as the basic algorithm for modeling because of its advantages in dealing with non-linear problems and its fast-computational ability.A hybrid FLNN attached to a small norm is built to improve the generalization performance of the model.Then,the trained model is used to predict the NH4 Cl salt crystallization temperature in the air cooler of a sour water stripper plant.Experimental results show the proposed improved FLNN algorithm can achieve better generalization performance than the PLS,the back propagation neural network,and the conventional FLNN models.展开更多
Ethernet fundamental and its data transmission model are introduced in brief and end-to-end network latency was analyzed in this paper. On the premise of not considering transmission quality and transmission cost, lat...Ethernet fundamental and its data transmission model are introduced in brief and end-to-end network latency was analyzed in this paper. On the premise of not considering transmission quality and transmission cost, latency was the function of the rest of network resource parameter (NRP). The relation between the number of nodes and that of end-to-end links was presented. In ethernet architecture, the algorithm to determine the link with the smallest latency is a polynomial issue when the number of network nodes is limited, so it can be solved by way of polynomial equations. Latency measuring is the key issue to determine the link with the smallest network latency. 3-node brigade (regiment) level network centric warfare (NCW) demonstration platform was studied and the latency between the detectors and weapon control stations was taken as an example. The algorithm of end-to-end network latency and link information in NCW was presented. The algorithm program based on Server/Client architecture was developed. The data transmission optimal link is one whose end-to-end latency is the smallest. This paper solves the key issue to determine the link whose end-to-end latency is the smallest in ethernet architecture. The study can be widely applied to determine the optimal link which is in the complex network environment of multiple service provision points.展开更多
A knowledge graph consists of a set of interconnected typed entities and their attributes,which shows a better performance to organize,manage and understand knowledge.However,because knowledge graphs contain a lot of ...A knowledge graph consists of a set of interconnected typed entities and their attributes,which shows a better performance to organize,manage and understand knowledge.However,because knowledge graphs contain a lot of knowledge triples,it is difficult to directly display to researchers.Semantic Link Network is an attempt,and it can deal with the construction,representation and reasoning of semantics naturally.Based on the Semantic Link Network,this paper explores the representation and construction of knowledge graph,and develops an academic knowledge graph prototype system to realize the representation,construction and visualization of knowledge graph.展开更多
Accurate link quality estimation is a fundamental building block in quality aware multi hop routing. In an inherently lossy, unreliable and dynamic medium such as wireless, the task of accurate estimation becomes very...Accurate link quality estimation is a fundamental building block in quality aware multi hop routing. In an inherently lossy, unreliable and dynamic medium such as wireless, the task of accurate estimation becomes very challenging. Over the years ETX has been widely used as a reliable link quality estimation metric. However, more recently it has been established that under heavy traffic loads ETX performance gets significantly worse. We examine the ETX metric's behavior in detail with respect to the MAC layer and UDP data; and identify the causes of its unreliability. Motivated by the observations made in our analysis, we present the design and implementation of our link quality measurement metric xDDR - a variation of ETX. This article extends xDDR to support network mobility. Our experiments show that xDDR substantially outperforms minimum hop count, ETX and HETX in terms of end-to-end packet delivery ratio in static as well as mobile scenarios.展开更多
Electroencephalography(EEG),helps to analyze the neuronal activity of a human brain in the form of electrical signals with high temporal resolution in the millisecond range.To extract clean clinical information from E...Electroencephalography(EEG),helps to analyze the neuronal activity of a human brain in the form of electrical signals with high temporal resolution in the millisecond range.To extract clean clinical information from EEG signals,it is essential to remove unwanted artifacts that are due to different causes including at the time of acquisition.In this piece of work,the authors considered the EEG signal contaminated with Electrocardiogram(ECG)artifacts that occurs mostly in cardiac patients.The clean EEG is taken from the openly available Mendeley database whereas the ECG signal is collected from the Physionet database to create artifacts in the EEG signal and verify the proposed algorithm.Being the artifactual signal is non-linear and non-stationary the Random Vector Functional Link Network(RVFLN)model is used in this case.The Machine Learning approach has taken a leading role in every field of current research and RVFLN is one of them.For the proof of adaptive nature,the model is designed with EEG as a reference and artifactual EEG as input.The peaks of ECG signals are evaluated for artifact estimation as the amplitude is higher than the EEG signal.To vary the weight and reduce the error,an exponentially weighted Recursive Least Square(RLS)algorithm is used to design the adaptive filter with the novel RVFLN model.The random vectors are considered in this model with a radial basis function to satisfy the required signal experimentation.It is found that the result is excellent in terms of Mean Square Error(MSE),Normalized Mean Square Error(NMSE),Relative Error(RE),Gain in Signal to Artifact Ratio(GSAR),Signal Noise Ratio(SNR),Information Quantity(IQ),and Improvement in Normalized Power Spectrum(INPS).Also,the proposed method is compared with the earlier methods to show its efficacy.展开更多
As the main food source for humans, the global movement of the three major grains significantly impacts human survival and development. To investigate the evolution of the world cereal trade network and its developmen...As the main food source for humans, the global movement of the three major grains significantly impacts human survival and development. To investigate the evolution of the world cereal trade network and its development trend, a weighted directed dynamic multiplexed network was established using historical data on cereal trade, cereal import dependency ratio, and arable land per capita. Inspired by the MLP framework, we redefined the weight determination method for computing layer weights and edge weights of the target layer, modified the CN, RA, AA, and PA indicators, and proposed the node similarity indicator for weighted directed networks. The AUC metric, which measures the accuracy of the algorithm, has also been improved in order to finally obtain the link prediction results for the grain trading network. The prediction results were processed, such as web-based presentation and community partition. It was found that the number of generalized trade agreements does not have a decisive impact on inter-country cereal trade. The former large grain exporters continue to play an important role in this trade network. In the future, the world trade in cereals will develop in the direction of more frequent intercontinental trade and gradually weaken the intracontinental cereal trade.展开更多
The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compe...The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compensator based on functional link neural network is used to deal with the engine nonlinearity and the hardware-in-loop simulation is also developed. The results show that the nonlinear MRAC controller has the adequate performance of compensating and adapting nonlinearity arising from the change of engine state or working environment. Such feature demonstrates potential practical applications of MRAC for aeroengine control system.展开更多
Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learnin...Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learning(SSL)method to establish the soft sensor model of product quality.Considering the slow time-varying characteristic of industrial processes,the model parameters should be updated smoothly.According to this characteristic,this paper proposes an online adaptive semi-supervised learning algorithm based on random vector functional link network(RVFLN),denoted as OAS-RVFLN.By introducing a L2-fusion term that can be seen a weight deviation constraint,the proposed algorithm unifies the offline and online learning,and achieves smoothness of model parameter update.Empirical evaluations both on benchmark testing functions and datasets reveal that the proposed OAS-RVFLN can outperform the conventional methods in learning speed and accuracy.Finally,the OAS-RVFLN is applied to the coal dense medium separation process in coal industry to estimate the ash content of coal product,which further verifies its effectiveness and potential of industrial application.展开更多
Random vector functional ink(RVFL)networks belong to a class of single hidden layer neural networks in which some parameters are randomly selected.Their network structure in which contains the direct links between inp...Random vector functional ink(RVFL)networks belong to a class of single hidden layer neural networks in which some parameters are randomly selected.Their network structure in which contains the direct links between inputs and outputs is unique,and stability analysis and real-time performance are two difficulties of the control systems based on neural networks.In this paper,combining the advantages of RVFL and the ideas of online sequential extreme learning machine(OS-ELM)and initial-training-free online extreme learning machine(ITFOELM),a novel online learning algorithm which is named as initial-training-free online random vector functional link algo rithm(ITF-ORVFL)is investigated for training RVFL.The link vector of RVFL network can be analytically determined based on sequentially arriving data by ITF-ORVFL with a high learning speed,and the stability for nonlinear systems based on this learning algorithm is analyzed.The experiment results indicate that the proposed ITF-ORVFL is effective in coping with nonparametric uncertainty.展开更多
This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced...This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method.展开更多
In this paper,we present a method used to the numeral eddy current sensor modeling based on genetic neural network to settle its nonlinear problem.The principle and algorithms of genetic neural network are introduced....In this paper,we present a method used to the numeral eddy current sensor modeling based on genetic neural network to settle its nonlinear problem.The principle and algorithms of genetic neural network are introduced.In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data.So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network.The nonlinear model has the advantages of strong robustness,on-line scaling and high precision.The maximum nonlinearity error can be reduced to 0.037% using GNN.However,the maximum nonlinearity error is 0.075% using least square method (LMS).展开更多
The method based on particle swarm optimization(PSO)integrated with functional link articial neural network(FLANN)for correcting dynamic characteristics of sensor is used to reduce sensor’s dynamic error caused by it...The method based on particle swarm optimization(PSO)integrated with functional link articial neural network(FLANN)for correcting dynamic characteristics of sensor is used to reduce sensor’s dynamic error caused by its system limitations.Combining the advantages of PSO and FLANN,with this method a dynamic compensator can be realized without knowing the dynamic model of the sensor.According to the input and output of the sensor and the reference model,the weights of the network trained were used to initialize one particle station of the whole particle swarm when the training of the FLANN had been finished.Then PSO algorithm was applied,and the global best particle station of the particle swarm was the parameters of the compensator.The feasibility of dynamic compensation method is tested.Simulation results from simulator of sensor show that the results after being compensated have given a good description to input signals.展开更多
The ability of the monolithic satellite,satellite orbit(especially GEO),and radio resource are very limited,so the development of distributed satellite cluster network(DSCN) receives more and more worldwide attention....The ability of the monolithic satellite,satellite orbit(especially GEO),and radio resource are very limited,so the development of distributed satellite cluster network(DSCN) receives more and more worldwide attention.In this paper,DSCN is surveyed and the study status of DSCN architecture design is summarized.The formation flying of spacecrafts,reconfiguration,networking,and applied research on distributed satellite spacecraft are described in detail.The DSCN will provide a great technology innovation for space information network,satellite communications,satellite navigation,deep space exploration,and space remote sensing.In addition,this paper points out future trends of the DSCN development.展开更多
In social network analysis, link prediction is a problem of fundamental importance. How to conduct a comprehensive and principled link prediction, by taking various network structure information into consideration,is ...In social network analysis, link prediction is a problem of fundamental importance. How to conduct a comprehensive and principled link prediction, by taking various network structure information into consideration,is of great interest. To this end, we propose here a dynamic logistic regression method. Specifically, we assume that one has observed a time series of network structure. Then the proposed model dynamically predicts future links by studying the network structure in the past. To estimate the model, we find that the standard maximum likelihood estimation(MLE) is computationally forbidden. To solve the problem, we introduce a novel conditional maximum likelihood estimation(CMLE) method, which is computationally feasible for large-scale networks. We demonstrate the performance of the proposed method by extensive numerical studies.展开更多
基金the National Natural Science Foundation of China under Grant 60496312the 863 Program of China under Grants 2003AA12331004 and 2006AA01Z260.
文摘The FuTURE 4G Time Division Duplex (TDD) trial system uses 3.5 GHz carrier frequency and several crucial technologies including broadband Multiple Input Multiple Output (MIMO) and Orthogonal Frequency Division Multiplexing (OFDM). These technologies challenge the link budget and networking analysis of the FuTURE 4G TDD trial network. This paper analyzes the practical 3.5 GHz propagation model and the link budget of Radio Frequency (RF) parameters of the trial system. Moreover,it introduces networking analysis and network planning of the trial system,which combines the field test results of the MIMO system. The FuTURE 4G TDD trial system and its trial network have been accomplished with successful checkup. The trial system fulfills all the requirements with two Access Points (AP) and three Mobile Terminals (MT),which supports multi-user,mobility,a high peak rate of 100 Mb/s,High-Definition TV (HDTV),high-speed data download,and Voice over IP (VoIP) services.
基金the National Natural Science Foundation of China(Grant Nos.61973118,51741902,11761033,12075088,and 11835003)Project in JiangXi Province Department of Science and Technology(Grant Nos.20212BBE51010 and 20182BCB22009)the Natural Science Foundation of Zhejiang Province(Grant No.Y22F035316)。
文摘We propose a model of edge-coupled interdependent networks with directed dependency links(EINDDLs)and develop the theoretical analysis framework of this model based on the self-consistent probabilities method.The phase transition behaviors and parameter thresholds of this model under random attacks are analyzed theoretically on both random regular(RR)networks and Erd¨os-Renyi(ER)networks,and computer simulations are performed to verify the results.In this EINDDL model,a fractionβof connectivity links within network B depends on network A and a fraction(1-β)of connectivity links within network A depends on network B.It is found that randomly removing a fraction(1-p)of connectivity links in network A at the initial state,network A exhibits different types of phase transitions(first order,second order and hybrid).Network B is rarely affected by cascading failure whenβis small,and network B will gradually converge from the first-order to the second-order phase transition asβincreases.We present the critical values ofβfor the phase change process of networks A and B,and give the critical values of p andβfor network B at the critical point of collapse.Furthermore,a cascading prevention strategy is proposed.The findings are of great significance for understanding the robustness of EINDDLs.
基金Supported by the National Nature Science Foundation of China (90716028)~~
文摘A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predictive controller (OGPC) and the functional link network (FLN) direct adaptive law. OGPC is a continuous-time nonlinear predictive control law. The FLN adaptive law is used to offset the unknown uncertainties and disturbances in a flight through the online learning. The learning process does not need any offline training phase. The stability analyses of the NHV close-loop system are provided and it is proved that the system error and the weight learning error are uniformly ultimately hounded. Simulation results show the satisfactory performance of the con- troller for the attitude tracking.
基金supported by the National Natural Science Foundation of China(31970116,72274192)。
文摘Biodiversity has become a terminology familiar to virtually every citizen in modern societies.It is said that ecology studies the economy of nature,and economy studies the ecology of humans;then measuring biodiversity should be similar with measuring national wealth.Indeed,there have been many parallels between ecology and economics,actually beyond analogies.For example,arguably the second most widely used biodiversity metric,Simpson(1949)’s diversity index,is a function of familiar Gini-index in economics.One of the biggest challenges has been the high“diversity”of diversity indexes due to their excessive“speciation”-there are so many indexes,similar to each country’s sovereign currency-leaving confused diversity practitioners in dilemma.In 1973,Hill introduced the concept of“numbers equivalent”,which is based on Renyi entropy and originated in economics,but possibly due to his abstruse interpretation of the concept,his message was not widely received by ecologists until nearly four decades later.What Hill suggested was similar to link the US dollar to gold at the rate of$35 per ounce under the Bretton Woods system.The Hill numbers now are considered most appropriate biodiversity metrics system,unifying Shannon,Simpson and other diversity indexes.Here,we approach to another paradigmatic shift-measuring biodiversity on ecological networks-demonstrated with animal gastrointestinal microbiomes representing four major invertebrate classes and all six vertebrate classes.The network diversity can reveal the diversity of species interactions,which is a necessary step for understanding the spatial and temporal structures and dynamics of biodiversity across environmental gradients.
基金supported by the National Natural Science Foundation of China (9071602860974106)
文摘The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link network(FLN) control method for an NHV with dynamical thrust and parameter uncertainties.The approach devises a new partially-feedback-functional-link-network(PFFLN) adaptive law and combines it with the nonlinear generalized predictive control(NGPC) algorithm.The PFFLN is employed for approximating uncertainties in flight.Its weights are online tuned based on Lyapunov stability theorem for the first time.The learning process does not need any offline training phase.Additionally,a robust controller with an adaptive gain is designed to offset the approximation error.Finally,simulation results show a satisfactory performance for the NHV attitude tracking,and also illustrate the controller's robustness.
基金financially supported by the Natural Science Foundation of Hunan Province(2021JJ30679)。
文摘Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures.In this study,finite element analyses(FEM)and the hardening small strain(HSS)model were performed to investigate the deflection of the diaphragm wall in the soft clay layer induced by braced excavations.Different geometric and mechanical properties of the wall were investigated to study the deflection behavior of the wall in soft clays.Accordingly,1090 hypothetical cases were surveyed and simulated based on the HSS model and FEM to evaluate the wall deflection behavior.The results were then used to develop an intelligent model for predicting wall deflection using the functional linked neural network(FLNN)with different functional expansions and activation functions.Although the FLNN is a novel approach to predict wall deflection;however,in order to improve the accuracy of the FLNN model in predicting wall deflection,three swarm-based optimization algorithms,such as artificial bee colony(ABC),Harris’s hawk’s optimization(HHO),and hunger games search(HGS),were hybridized to the FLNN model to generate three novel intelligent models,namely ABC-FLNN,HHO-FLNN,HGS-FLNN.The results of the hybrid models were then compared with the basic FLNN and MLP models.They revealed that FLNN is a good solution for predicting wall deflection,and the application of different functional expansions and activation functions has a significant effect on the outcome predictions of the wall deflection.It is remarkably interesting that the performance of the FLNN model was better than the MLP model with a mean absolute error(MAE)of 19.971,root-mean-squared error(RMSE)of 24.574,and determination coefficient(R^(2))of 0.878.Meanwhile,the performance of the MLP model only obtained an MAE of 20.321,RMSE of 27.091,and R^(2)of 0.851.Furthermore,the results also indicated that the proposed hybrid models,i.e.,ABC-FLNN,HHO-FLNN,HGS-FLNN,yielded more superior performances than those of the FLNN and MLP models in terms of the prediction of deflection behavior of diaphragm walls with an MAE in the range of 11.877 to 12.239,RMSE in the range of 15.821 to 16.045,and R^(2)in the range of 0.949 to 0.951.They can be used as an alternative tool to simulate diaphragm wall deflections under different conditions with a high degree of accuracy.
基金supported by the National Natural Science Foundation of China(Grant No.51876194,U1909216)the China Petrochemical Corporation Research Project(318023-2)the Zhejiang Public Welfare Technology Research Project(LGG20F030007)。
文摘The air cooler is an important equipment in the petroleum refining industry.Ammonium chloride(NH4 Cl)deposition-induced corrosion is one of its main failure forms.In this study,the ammonium salt crystallization temperature is chosen as the key decision variable of NH4 Cl deposition-induced corrosion through in-depth mechanism research and experimental analysis.The functional link neural network(FLNN)is adopted as the basic algorithm for modeling because of its advantages in dealing with non-linear problems and its fast-computational ability.A hybrid FLNN attached to a small norm is built to improve the generalization performance of the model.Then,the trained model is used to predict the NH4 Cl salt crystallization temperature in the air cooler of a sour water stripper plant.Experimental results show the proposed improved FLNN algorithm can achieve better generalization performance than the PLS,the back propagation neural network,and the conventional FLNN models.
基金Sponsored by Grand Preresearch Project Foundation of General Armament Department of the CPLAin the Tenth Five-year Plan (Grant No41306020202)the National Natural Science Foundation of China(Grant No60672150)
文摘Ethernet fundamental and its data transmission model are introduced in brief and end-to-end network latency was analyzed in this paper. On the premise of not considering transmission quality and transmission cost, latency was the function of the rest of network resource parameter (NRP). The relation between the number of nodes and that of end-to-end links was presented. In ethernet architecture, the algorithm to determine the link with the smallest latency is a polynomial issue when the number of network nodes is limited, so it can be solved by way of polynomial equations. Latency measuring is the key issue to determine the link with the smallest network latency. 3-node brigade (regiment) level network centric warfare (NCW) demonstration platform was studied and the latency between the detectors and weapon control stations was taken as an example. The algorithm of end-to-end network latency and link information in NCW was presented. The algorithm program based on Server/Client architecture was developed. The data transmission optimal link is one whose end-to-end latency is the smallest. This paper solves the key issue to determine the link whose end-to-end latency is the smallest in ethernet architecture. The study can be widely applied to determine the optimal link which is in the complex network environment of multiple service provision points.
文摘A knowledge graph consists of a set of interconnected typed entities and their attributes,which shows a better performance to organize,manage and understand knowledge.However,because knowledge graphs contain a lot of knowledge triples,it is difficult to directly display to researchers.Semantic Link Network is an attempt,and it can deal with the construction,representation and reasoning of semantics naturally.Based on the Semantic Link Network,this paper explores the representation and construction of knowledge graph,and develops an academic knowledge graph prototype system to realize the representation,construction and visualization of knowledge graph.
文摘Accurate link quality estimation is a fundamental building block in quality aware multi hop routing. In an inherently lossy, unreliable and dynamic medium such as wireless, the task of accurate estimation becomes very challenging. Over the years ETX has been widely used as a reliable link quality estimation metric. However, more recently it has been established that under heavy traffic loads ETX performance gets significantly worse. We examine the ETX metric's behavior in detail with respect to the MAC layer and UDP data; and identify the causes of its unreliability. Motivated by the observations made in our analysis, we present the design and implementation of our link quality measurement metric xDDR - a variation of ETX. This article extends xDDR to support network mobility. Our experiments show that xDDR substantially outperforms minimum hop count, ETX and HETX in terms of end-to-end packet delivery ratio in static as well as mobile scenarios.
文摘Electroencephalography(EEG),helps to analyze the neuronal activity of a human brain in the form of electrical signals with high temporal resolution in the millisecond range.To extract clean clinical information from EEG signals,it is essential to remove unwanted artifacts that are due to different causes including at the time of acquisition.In this piece of work,the authors considered the EEG signal contaminated with Electrocardiogram(ECG)artifacts that occurs mostly in cardiac patients.The clean EEG is taken from the openly available Mendeley database whereas the ECG signal is collected from the Physionet database to create artifacts in the EEG signal and verify the proposed algorithm.Being the artifactual signal is non-linear and non-stationary the Random Vector Functional Link Network(RVFLN)model is used in this case.The Machine Learning approach has taken a leading role in every field of current research and RVFLN is one of them.For the proof of adaptive nature,the model is designed with EEG as a reference and artifactual EEG as input.The peaks of ECG signals are evaluated for artifact estimation as the amplitude is higher than the EEG signal.To vary the weight and reduce the error,an exponentially weighted Recursive Least Square(RLS)algorithm is used to design the adaptive filter with the novel RVFLN model.The random vectors are considered in this model with a radial basis function to satisfy the required signal experimentation.It is found that the result is excellent in terms of Mean Square Error(MSE),Normalized Mean Square Error(NMSE),Relative Error(RE),Gain in Signal to Artifact Ratio(GSAR),Signal Noise Ratio(SNR),Information Quantity(IQ),and Improvement in Normalized Power Spectrum(INPS).Also,the proposed method is compared with the earlier methods to show its efficacy.
文摘As the main food source for humans, the global movement of the three major grains significantly impacts human survival and development. To investigate the evolution of the world cereal trade network and its development trend, a weighted directed dynamic multiplexed network was established using historical data on cereal trade, cereal import dependency ratio, and arable land per capita. Inspired by the MLP framework, we redefined the weight determination method for computing layer weights and edge weights of the target layer, modified the CN, RA, AA, and PA indicators, and proposed the node similarity indicator for weighted directed networks. The AUC metric, which measures the accuracy of the algorithm, has also been improved in order to finally obtain the link prediction results for the grain trading network. The prediction results were processed, such as web-based presentation and community partition. It was found that the number of generalized trade agreements does not have a decisive impact on inter-country cereal trade. The former large grain exporters continue to play an important role in this trade network. In the future, the world trade in cereals will develop in the direction of more frequent intercontinental trade and gradually weaken the intracontinental cereal trade.
文摘The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compensator based on functional link neural network is used to deal with the engine nonlinearity and the hardware-in-loop simulation is also developed. The results show that the nonlinear MRAC controller has the adequate performance of compensating and adapting nonlinearity arising from the change of engine state or working environment. Such feature demonstrates potential practical applications of MRAC for aeroengine control system.
基金Projects(61603393,61973306)supported in part by the National Natural Science Foundation of ChinaProject(BK20160275)supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Projects(2015M581885,2018T110571)supported by the Postdoctoral Science Foundation of ChinaProject(PAL-N201706)supported by the Open Project Foundation of State Key Laboratory of Synthetical Automation for Process Industries of Northeastern University,China
文摘Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learning(SSL)method to establish the soft sensor model of product quality.Considering the slow time-varying characteristic of industrial processes,the model parameters should be updated smoothly.According to this characteristic,this paper proposes an online adaptive semi-supervised learning algorithm based on random vector functional link network(RVFLN),denoted as OAS-RVFLN.By introducing a L2-fusion term that can be seen a weight deviation constraint,the proposed algorithm unifies the offline and online learning,and achieves smoothness of model parameter update.Empirical evaluations both on benchmark testing functions and datasets reveal that the proposed OAS-RVFLN can outperform the conventional methods in learning speed and accuracy.Finally,the OAS-RVFLN is applied to the coal dense medium separation process in coal industry to estimate the ash content of coal product,which further verifies its effectiveness and potential of industrial application.
基金supported by the Ministry of Science and Technology of China(2018AAA0101000,2017YFF0205306,WQ20141100198)the National Natural Science Foundation of China(91648117)。
文摘Random vector functional ink(RVFL)networks belong to a class of single hidden layer neural networks in which some parameters are randomly selected.Their network structure in which contains the direct links between inputs and outputs is unique,and stability analysis and real-time performance are two difficulties of the control systems based on neural networks.In this paper,combining the advantages of RVFL and the ideas of online sequential extreme learning machine(OS-ELM)and initial-training-free online extreme learning machine(ITFOELM),a novel online learning algorithm which is named as initial-training-free online random vector functional link algo rithm(ITF-ORVFL)is investigated for training RVFL.The link vector of RVFL network can be analytically determined based on sequentially arriving data by ITF-ORVFL with a high learning speed,and the stability for nonlinear systems based on this learning algorithm is analyzed.The experiment results indicate that the proposed ITF-ORVFL is effective in coping with nonparametric uncertainty.
基金Project supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,Chinathe Foundation of Huaiyin Teachers College Professor,China(Grant Nos07KJD510027 and 06HSJS020)
文摘This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method.
文摘In this paper,we present a method used to the numeral eddy current sensor modeling based on genetic neural network to settle its nonlinear problem.The principle and algorithms of genetic neural network are introduced.In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data.So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network.The nonlinear model has the advantages of strong robustness,on-line scaling and high precision.The maximum nonlinearity error can be reduced to 0.037% using GNN.However,the maximum nonlinearity error is 0.075% using least square method (LMS).
基金Natural Science Foundation of Shanxi Province(No.2009011023)
文摘The method based on particle swarm optimization(PSO)integrated with functional link articial neural network(FLANN)for correcting dynamic characteristics of sensor is used to reduce sensor’s dynamic error caused by its system limitations.Combining the advantages of PSO and FLANN,with this method a dynamic compensator can be realized without knowing the dynamic model of the sensor.According to the input and output of the sensor and the reference model,the weights of the network trained were used to initialize one particle station of the whole particle swarm when the training of the FLANN had been finished.Then PSO algorithm was applied,and the global best particle station of the particle swarm was the parameters of the compensator.The feasibility of dynamic compensation method is tested.Simulation results from simulator of sensor show that the results after being compensated have given a good description to input signals.
基金National Natural Science foundations of China(Nos.61032004,91338201,and 61231011)National High Technology Research and Development Program of China(863 Program)(No.2012AA121605)
文摘The ability of the monolithic satellite,satellite orbit(especially GEO),and radio resource are very limited,so the development of distributed satellite cluster network(DSCN) receives more and more worldwide attention.In this paper,DSCN is surveyed and the study status of DSCN architecture design is summarized.The formation flying of spacecrafts,reconfiguration,networking,and applied research on distributed satellite spacecraft are described in detail.The DSCN will provide a great technology innovation for space information network,satellite communications,satellite navigation,deep space exploration,and space remote sensing.In addition,this paper points out future trends of the DSCN development.
基金supported by National Natural Science Foundation of China (Grant Nos. 11131002, 11271031, 71532001, 11525101, 71271210 and 714711730)the Business Intelligence Research Center at Peking University+5 种基金the Center for Statistical Science at Peking Universitythe Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China (Grant No. 16XNLF01)Ministry of Education Humanities Social Science Key Research Institute in University Foundation (Grant No. 14JJD910002)the Center for Applied Statistics, School of Statistics, Renmin University of ChinallChina Postdoctoral Science Foundation (Grant No. 2016M600155)
文摘In social network analysis, link prediction is a problem of fundamental importance. How to conduct a comprehensive and principled link prediction, by taking various network structure information into consideration,is of great interest. To this end, we propose here a dynamic logistic regression method. Specifically, we assume that one has observed a time series of network structure. Then the proposed model dynamically predicts future links by studying the network structure in the past. To estimate the model, we find that the standard maximum likelihood estimation(MLE) is computationally forbidden. To solve the problem, we introduce a novel conditional maximum likelihood estimation(CMLE) method, which is computationally feasible for large-scale networks. We demonstrate the performance of the proposed method by extensive numerical studies.