期刊文献+
共找到512,594篇文章
< 1 2 250 >
每页显示 20 50 100
基于多维可预知特征的TCN-LSTM城轨短期客流预测
1
作者 赵利强 李瑞森 +2 位作者 唐水雄 唐金金 张涛 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期86-96,共11页
地铁客流量波动受众多因素影响,准确的客流预测数据有利于制定更高效的行车控制方案和客流管控方案。为提高客流预测精度,提出一种基于多维可预知特征的时序卷积神经网络-长短期记忆神经网络模型(TCNLSTM)地铁短期客流预测方法。考虑外... 地铁客流量波动受众多因素影响,准确的客流预测数据有利于制定更高效的行车控制方案和客流管控方案。为提高客流预测精度,提出一种基于多维可预知特征的时序卷积神经网络-长短期记忆神经网络模型(TCNLSTM)地铁短期客流预测方法。考虑外部因素的影响,引入Spearman相关系数分析并提取日期、天气等可预知特征及其状态集,以提升预测精度,缩小特征空间,克服了冗余特征数据导致的模型过于复杂问题;通过融合时序卷积神经网络(TCN)提取的客流时间序列特征和可预知特征状态集构建了长短期记忆神经网络(LSTM)层输入,组合模型学习客流与外部影响因素的长短期依赖,从而实现常规日、节假日、不同天气等多场景下的短期客流预测。基于某西南城市地铁刷卡交易数据,对比差分整合移动平均自回归模型(ARIMA)、TCN、LSTM及TCN-LSTM模型的短期客流预测结果,得出组合模型的总体平均绝对误差(MAE)值比其他方法低27%~48%,均方误差(MSE)值低13%~35%,平均绝对百分比误差(MAPE)值低2.8%~6.7%,上述3项指标均表明TCN-LSTM模型的客流预测效果更好。此外,对比实验表明通过融入提取的可预知特征数据,TCN-LSTM模型在测试集上的预测误差评价指标明显降低,所提方法能有效提高地铁短期客流预测精度。 展开更多
关键词 城市轨道交通 客流预测 长短期记忆神经网络(LSTM) 时序卷积神经网络(tcn) Spearman相关系数
下载PDF
基于CEEMDAN-VMD-TCN-lightGBM模型的水质预测研究
2
作者 项新建 张颖超 +3 位作者 许宏辉 厉阳 王世乾 郑永平 《中国农村水利水电》 北大核心 2024年第3期86-95,共10页
针对目前水质预测模型中因为数据本身的复杂性、在信号处理过程中存在的噪声干扰以及分解深度不够导致单一分解难以全面捕捉信号非线性特征的问题,提出了一种基于二次分解的水质预测模型。该模型采用完全自适应噪声集合经验模态分解(CEE... 针对目前水质预测模型中因为数据本身的复杂性、在信号处理过程中存在的噪声干扰以及分解深度不够导致单一分解难以全面捕捉信号非线性特征的问题,提出了一种基于二次分解的水质预测模型。该模型采用完全自适应噪声集合经验模态分解(CEEMDAN)对原始数据进行分解,再利用变分模态分解(VMD)对熵值最高的模态分量进行二次分解,最终将处理后的时间序列输入到TCN-lightGBM多特征预测模型中。同时,采用麻雀算法(SSA)对预测模型进行优化。以山东省玉符河水质为例,本模型的均方根误差(RMSE)是0.1053,平均绝对误差(MAE)是0.0815,决定系数(R2)是0.9471,与GRU、LSTM、LightGBM、TCN等当下较为流行的模型的预测指标进行比较。结果显示,在R2上本模型提升了53.04%、70.41%、66.07%、65.20%等,在RMSE上减少了62.76%、65.50%、64.93%、64.80%等,在MAE上降低了62.76%、66.24%、63.80%、65.24%等。由此可知,基于CEEMDAN-VMD-TCN-lightGBM的模型具有更好的预测性能、泛化能力和捕捉信号非线性特征的能力。 展开更多
关键词 二次分解 tcn lightGBM 多特征预测 水质预测 麻雀算法
下载PDF
基于VMD-TCN的水电机组健康状态监测系统设计 被引量:1
3
作者 钟旭 张宝源 +2 位作者 孟威 常峰德 高志国 《水利水电快报》 2024年第2期44-47,共4页
针对常规的水电机组运行监测系统以高频振动信号监测为主,低频振动信号监测失误问题较多,影响水电机组正常运行的问题,设计了基于VMD-TCN的水电机组健康状态监测系统。硬件方面,设计了AC102加速度传感器;软件方面,采集水电机组健康状态... 针对常规的水电机组运行监测系统以高频振动信号监测为主,低频振动信号监测失误问题较多,影响水电机组正常运行的问题,设计了基于VMD-TCN的水电机组健康状态监测系统。硬件方面,设计了AC102加速度传感器;软件方面,采集水电机组健康状态数据,对水电机组状态信号进行处理,判断机组健康状态。基于VMD-TCN分解水电机组健康状态监测信号,根据采集到的状态信号进行信号频段子模态分解,确保监测精准度。系统测试结果表明:该设计提升了系统的监测效果,系统性能良好。 展开更多
关键词 VMD-tcn 水电机组 健康状态 监测系统
下载PDF
基于TCN-BiLSTM与LSTM模型对比预测北洛河径流 被引量:1
4
作者 张梦凡 丁兵兵 +1 位作者 贾国栋 余新晓 《北京林业大学学报》 CAS CSCD 北大核心 2024年第4期141-148,共8页
【目的】本研究旨在探究TCN-BiLSTM耦合模型与传统LSTM模型在径流模拟预测中的性能,为洪水风险管理和区域水资源规划提供准确有效的径流预测模型。【方法】以北洛河流域为研究区,基于双向长短期记忆网络(BiLSTM)和时域卷积网络(TCN)建... 【目的】本研究旨在探究TCN-BiLSTM耦合模型与传统LSTM模型在径流模拟预测中的性能,为洪水风险管理和区域水资源规划提供准确有效的径流预测模型。【方法】以北洛河流域为研究区,基于双向长短期记忆网络(BiLSTM)和时域卷积网络(TCN)建立一种新的径流预测耦合模型TCN-BiLSTM。利用相关性分析,筛选预测径流的输入因子,确定4种不同的输入方案应用于TCN-BiLSTM耦合模型和传统LSTM模型,每个模型分别预测1、2、3 d的径流量。采用平均绝对误差(MAE)、均方根误差(RMSE)和拟合优度(R^(2))来评估模型的预测性能。【结果】(1)TCN-BiLSTM耦合模型整体预测性能优于LSTM模型,TCN-BiLSTM模型R^(2)达到0.91,高于LSTM的0.89。相比于LSTM,TCN-BiLSTM对于峰值和突变点的捕捉能力更强,对于波动大的复杂数据预测效果更优;(2)在针对未来1~3 d径流量预测中,随着预见期的延长,4种方案下TCN-BiLSTM和LSTM模型的预测效果均有所下降,相较于预测1 d,预测3 d的TCNBiLSTM和LSTM模型的R^(2)分别平均下降了0.17和0.14,RMSE分别平均增大了4.59和4.40,MAE分别平均增大了1.26和1.31;(3)在4种输入方案里,日累积降水量和日径流量作为输入变量时,模型的预测效果最好。降水数据的加入使得TCN-BiLSTM和LSTM模型相较于单一日径流数据作为输入变量时,1、2、3 d径流量预测的R^(2)分别提高15%、14%、6%和18%、14%和1%。【结论】TCN-BiLSTM耦合模型和LSTM模型R^(2)均能达到0.85以上,TCN-BiLSTM模型R^(2)较LSTM提高了2%。对比来看,TCN-BiLSTM模型在拟合洪水过程中表现更为优异,对于汛期的预测性能优于非汛期。输入变量对模型的影响较大,有效且高质量的气象数据能够提高模型的预测性能。 展开更多
关键词 水文模拟 tcn-BiLSTM 日径流预测 北洛河流域
下载PDF
基于注意力机制的TCN-BiLSTM船舶轨迹预测 被引量:1
5
作者 郭逸婕 张君毅 王鹏 《计算机测量与控制》 2024年第1期30-36,共7页
针对现有船舶轨迹预测模型预测准确度低的问题,提出一种基于注意力机制的时域卷积网络和双向长短时记忆网络结合的船舶轨迹预测模型;首先搭建TCN网络提取船舶轨迹的序列特征,之后将注意力机制引入网络调整不同属性特征的权值,突出对轨... 针对现有船舶轨迹预测模型预测准确度低的问题,提出一种基于注意力机制的时域卷积网络和双向长短时记忆网络结合的船舶轨迹预测模型;首先搭建TCN网络提取船舶轨迹的序列特征,之后将注意力机制引入网络调整不同属性特征的权值,突出对轨迹预测影响更大的特征,最后搭建Bi-LSTM网络学习轨迹序列的前后状况来提取序列中更多的信息,实现对船舶未来轨迹的预测;通过实际船舶AIS数据对网络进行训练与测试实验,实验结果表明,TCN-ABiLSTM模型相比LSTM、Bi-LSTM和BiLSTM-Attention模型船舶轨迹预测精度更高,拟合程度更好,验证了所设计的TCN-ABiLSTM模型在船舶轨迹预测方面的的有效性和实用性。 展开更多
关键词 轨迹预测 时域卷积网络 长短时记忆网络 注意力机制 AIS
下载PDF
基于TCN-BiLSTM-Attention-ESN的光伏功率预测
6
作者 时培明 郭轩宇 +3 位作者 杜清灿 许学方 贺长波 李瑞雄 《太阳能学报》 EI CAS CSCD 北大核心 2024年第9期304-316,共13页
针对光伏发电功率随机性强、难以准确预测的问题,提出一种基于时间卷积网络(TCN)、双向长短期记忆网络(BiLSTM)和回声状态网络(ESN)的组合预测方法。首先,使用自适应噪声完备集合经验模态分解(CEEMDAN)将功率数据分解为一系列相对平稳... 针对光伏发电功率随机性强、难以准确预测的问题,提出一种基于时间卷积网络(TCN)、双向长短期记忆网络(BiLSTM)和回声状态网络(ESN)的组合预测方法。首先,使用自适应噪声完备集合经验模态分解(CEEMDAN)将功率数据分解为一系列相对平稳、不同波动模式的子功率序列;再将分解重构后的功率序列和其他特征序列输入到TCN-BiLSTM-Attention-ESN组合模型中,其中TCN-BiLSTM-Attention用于提取光伏序列波动特征并构建时空特征向量;最后,将所提取的时空特征向量输入ESN获得预测结果。采用新疆某光伏电站的光伏功率数据进行验证,结果表明与时下先进的预测方法相比,所提方法具有更高的预测精度,有助于提升光伏发电占比,保障电力系统平衡和运行安全。 展开更多
关键词 光伏发电功率 预测 神经网络 回声状态网络 时间卷积网络 双向长短期记忆网络
下载PDF
基于TCN和迁移学习的混凝土坝变形预测方法 被引量:1
7
作者 张健飞 叶亮 王磊 《人民黄河》 CAS 北大核心 2024年第4期142-147,共6页
混凝土坝变形测点数据丢失或者新增测点测量时间太短都会导致这部分测点的数据量不足,使得变形预测精度受到影响。为了提高这些小数据量测点的变形预测精度,提出了将时域卷积网络(TCN)与迁移学习相结合的变形预测方法。以数据量充足的... 混凝土坝变形测点数据丢失或者新增测点测量时间太短都会导致这部分测点的数据量不足,使得变形预测精度受到影响。为了提高这些小数据量测点的变形预测精度,提出了将时域卷积网络(TCN)与迁移学习相结合的变形预测方法。以数据量充足的测点为源域,以缺少数据的测点为目标域,将在源域上训练好的TCN模型的结构和参数迁移到目标域模型中,固定其中的冻结层参数,利用目标域中的数据对目标域模型可调层参数进行调整。同时,采用动态时间规整选择与目标域数据序列相似度最高的监测数据作为最佳源域数据,提升迁移学习效果。工程实例分析表明:迁移学习后的目标域模型的均方根误差和平均绝对误差与利用足量数据训练的TCN模型的预测误差相比,差异仅分别为1.73%和8.09%,小数据量情况下TCN预测模型的精度得到了提高。 展开更多
关键词 时域卷积网络 迁移学习 动态时间规整 变形预测
下载PDF
基于TCN-Wpsformer混合模型的超短期风电功率预测 被引量:2
8
作者 徐钽 谢开贵 +3 位作者 王宇 胡博 邵常政 赵宇生 《电力自动化设备》 EI CSCD 北大核心 2024年第8期54-61,共8页
针对基于梯度下降的递归神经网络难以捕获时间跨度较长的风电功率长期依赖关系的问题,提出一种基于时间卷积网络(TCN)和窗口概率稀疏Transformer(Wpsformer)混合模型的超短期风电功率预测方法。将包含时间季节性特征的时间编码与包含原... 针对基于梯度下降的递归神经网络难以捕获时间跨度较长的风电功率长期依赖关系的问题,提出一种基于时间卷积网络(TCN)和窗口概率稀疏Transformer(Wpsformer)混合模型的超短期风电功率预测方法。将包含时间季节性特征的时间编码与包含原始数据位置信息的绝对位置编码进行拼接,引入TCN提取时间片段特征,将时间片段特征融入自注意力机制,以时间片段的相关性联系替代时间点的相关性联系。通过Wpsformer模型多步输出超短期风电功率预测值,与原始Transformer模型相比,Wpsformer模型使用窗口概率稀疏自注意力机制,在捕获长期依赖关系的同时筛选出重要程度相对较高的时间片段特征进行计算,提高了预测精度且降低了计算成本。曹店风电场的算例结果表明,所提模型在预测精度方面具有明显优势。消融实验证明了所提模型各模块的必要性。 展开更多
关键词 超短期风电功率预测 时间卷积网络 窗口概率稀疏Transformer 窗口概率稀疏自注意力机制
下载PDF
基于Bi-TCN-LSTM的滚动轴承剩余使用寿命预测方法 被引量:1
9
作者 高萌 鲁玉军 《轻工机械》 CAS 2024年第3期66-73,79,共9页
由于时间卷积网络(temporal convolutional networks, TCN)感知场不足,轴承的关键退化信息常常被忽略,导致轴承剩余使用寿命(remaining useful life, RUL)预测结果不佳;而长短期记忆网络(long short-term memory, LSTM)随着数据量及序... 由于时间卷积网络(temporal convolutional networks, TCN)感知场不足,轴承的关键退化信息常常被忽略,导致轴承剩余使用寿命(remaining useful life, RUL)预测结果不佳;而长短期记忆网络(long short-term memory, LSTM)随着数据量及序列长度的增加,长期依赖问题仍可能得不到很好解决。因此,课题组提出了一种基于双向时间卷积网络和长短期记忆(Bi-TCN-LSTM)的滚动轴承寿命预测方法。首先对多传感器数据进行归一化并做融合处理,然后采用Bi-TCN-LSTM进行数据特征提取与深度学习,其中对TCN模块引入卷积注意力机制(convolutional attention module, CAM),将LSTM的3个门简化为1个门,有效加快了预测模型学习的速度并提高了预测模型的精确度;采用IEEE PHM 2012轴承数据集作为实验数据集,进行了RUL预测实验。结果表明:与其他先进的预测模型相比,Bi-TCN-LSTM方法预测结果的误差相对较低,预测性能较好。 展开更多
关键词 滚动轴承 剩余使用寿命预测 多传感器融合 时间卷积网络 长短期记忆网络
下载PDF
基于TCN和残差自注意力的变工况下滚动轴承剩余寿命迁移预测
10
作者 潘雪娇 董绍江 +2 位作者 朱朋 周存芳 宋锴 《振动与冲击》 EI CSCD 北大核心 2024年第1期145-152,共8页
针对变工况环境下采集到的滚动轴承寿命状态数据存在特征分布差异,深度神经网络模型泛化能力差的问题,结合时间卷积网络(temporal convolutional neural network,TCN)和残差自注意力机制提出了一种端到端的滚动轴承剩余寿命(remaining u... 针对变工况环境下采集到的滚动轴承寿命状态数据存在特征分布差异,深度神经网络模型泛化能力差的问题,结合时间卷积网络(temporal convolutional neural network,TCN)和残差自注意力机制提出了一种端到端的滚动轴承剩余寿命(remaining useful life,RUL)迁移预测方法。首先,将传感器采集到的一维时域信号利用短时傅里叶变换转换为频域信号;其次,剩余寿命迁移预测网络通用特征提取层采用残差自注意力TCN网络,该网络在较好提取时间序列信息的同时,进一步通过残差自注意力机制捕获轴承局部退化特征,增强模型的迁移特征提取能力;再次,采用提出的联合领域自适应策略匹配变工况下滚动轴承寿命状态数据特征分布差异,实现不同工况下轴承寿命状态知识的迁移预测;最后,在公开的滚动轴承全寿命数据集上进行试验验证,结果表明所提方法能有效实现变工况下的滚动轴承RUL预测,并获得较好的预测性能。 展开更多
关键词 剩余寿命(RUL) 滚动轴承 时间卷积网络(tcn) 残差自注意力 迁移学习
下载PDF
基于TCN-DenseNet的烧结矿FeO含量预测
11
作者 黄鼎堯 黄晓贤 +5 位作者 向家发 彭梓塘 周茂军 陈许玲 冯振湘 范晓慧 《河北冶金》 2024年第10期14-19,49,共7页
烧结矿FeO含量是烧结工序的一项重要质量和能耗指标,也对高炉冶炼有直接影响。针对目前化学检测法检测烧结矿FeO含量时存在较长时间滞后的现状,本文提出了一种时域卷积网络(Temporal Convolutional Network,TCN)与密集连接卷积神经网络(... 烧结矿FeO含量是烧结工序的一项重要质量和能耗指标,也对高炉冶炼有直接影响。针对目前化学检测法检测烧结矿FeO含量时存在较长时间滞后的现状,本文提出了一种时域卷积网络(Temporal Convolutional Network,TCN)与密集连接卷积神经网络(Densely Connected Convolutional Network,DenseNet)混合的烧结矿FeO含量预测方法。首先采用TCN建立烧结矿FeO含量的时间序列预测模型,同时采集烧结机尾断面红外图像,采用DenseNet建立烧结矿FeO预测模型,通过自适应加权平均方法将两者的输出结果进行整合,获得最终的烧结矿FeO含量预测值。针对烧结矿层断面红外图像的特征,对DenseNet进行了添加注意力层、修改卷积块结构,并修改了浅层卷积层大小和步长等改进措施。在国内某钢铁公司的大型烧结机的实际生产数据上对模型进行了验证,经过数据处理、模型参数优化等操作后,本文所提的TCN-DenseNet混合模型的烧结矿FeO含量预测在测试集绝对误差±0.4%以内命中率可达94.34%,均方根误差为0.21,优于单独使用TCN或者DenseNet进行建模时的预测效果。该方法对提高烧结矿FeO含量预测的准确性和稳定性效果显著,可以为烧结现场的生产操作提供数据支撑。 展开更多
关键词 烧结 FEO含量 复合预测模型 tcn DenseNet 注意力机制
下载PDF
基于LSTM_TCN模型的降雨型滑坡时间概率预测及气象预警建模
12
作者 赵玉 陈丽霞 梁梦姣 《地质科技通报》 CAS CSCD 北大核心 2024年第2期201-214,共14页
如果滑坡发生时间信息不完备则会导致滑坡与降雨时序关系错误,以至于降雨阈值模型精度偏低。以重庆市万州区1995-2015年所发生的降雨型滑坡为研究对象,将区内严重缺失历史滑坡时间信息的恒合乡作为验证区,提出了一种基于长短时记忆网络(... 如果滑坡发生时间信息不完备则会导致滑坡与降雨时序关系错误,以至于降雨阈值模型精度偏低。以重庆市万州区1995-2015年所发生的降雨型滑坡为研究对象,将区内严重缺失历史滑坡时间信息的恒合乡作为验证区,提出了一种基于长短时记忆网络(LSTM)融合时域卷积网络(TCN)的模型方法。该方法通过模拟降雨型滑坡发生时间与降雨量间的非线性关系,重建降雨型滑坡事件在某日发生的时间概率。将重建时间信息后的滑坡事件进行了验证与筛选,应用于累积有效降雨量-降雨历时曲线的合理划分,构建了滑坡气象预警模型。结果表明,本方法所预测滑坡时间概率平均值达到90.33%,高于人工神经网络(ANN)(71.17%)、LSTM(72.75%)和TCN(86.91%)的概率。利用预测概率高于90%的滑坡,将验证区18个时间信息扩充至201个。基于扩充时间信息后的滑坡数据所构建的气象预警模型比仅利用历史滑坡事件具有更合理的预警分级,在严重警告级别上有效预警率提升了42.86%。结果说明该方法可弥补野外调查中灾害数据时间信息不足的问题,为降雨型滑坡气象预警工作提供数据支撑,由此提高气象预警准确率。 展开更多
关键词 降雨型滑坡 时间概率 E-D有效降雨阈值模型 tcn LSTM 滑坡气象预警
下载PDF
融合2维卷积与注意力以预测PM_(2.5)浓度的S-TCN模型
13
作者 李春辉 张瑛琪 孙洁 《国外电子测量技术》 2024年第1期77-86,共10页
针对传统预测模型对PM_(2.5)浓度预测精度较低、可解释性差的缺陷,提出一种融合2维卷积层(2D convolution)和注意力层的时空卷积网络预测模型(spatio-2D-temporal convolutional networks attention, S-2D-TCNA)。选取北京市2014年5月1... 针对传统预测模型对PM_(2.5)浓度预测精度较低、可解释性差的缺陷,提出一种融合2维卷积层(2D convolution)和注意力层的时空卷积网络预测模型(spatio-2D-temporal convolutional networks attention, S-2D-TCNA)。选取北京市2014年5月1日~2015年4月30日的36个监测站点逐小时空气质量和气象数据,通过对多个站点时空相关性分析,将符合相关性阈值的监测站数据输入至卷积进行升维再降维的处理方式,得出具有时空序列的输入特征;将注意力融入时间卷积网络预测模型,用于预测未来1 h的中心监测站PM_(2.5)浓度。在模型训练优化参数过程中,通过Adam来训练深度学习模型的参数,然后使用贝叶斯优化来调整模型的超参数,这种方法能找到模型的最佳参数,使其均方根误差、平均绝对误差分别减少3.791%和5.576%,拟合优度增大0.67%;在质量方面,所提出的S-Conv2D-TCNA模型均方根误差、平均绝对误差和拟合优度分别为16.020 9、10.610 0和0.942 8,该预测模型在准确性和稳定性方面优于基线模型。结果表明,该预测模型空气污染的预警、区域预防和控制方面大有可为。 展开更多
关键词 时空序列 注意力 时间卷积网络(tcn) PM_(2.5)浓度
下载PDF
Pluggable multitask diffractive neural networks based on cascaded metasurfaces 被引量:3
14
作者 Cong He Dan Zhao +8 位作者 Fei Fan Hongqiang Zhou Xin Li Yao Li Junjie Li Fei Dong Yin-Xiao Miao Yongtian Wang Lingling Huang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第2期23-31,共9页
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c... Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems. 展开更多
关键词 optical neural networks diffractive deep neural networks cascaded metasurfaces
下载PDF
基于音频动态特征重组和TCN-Attention的电力变压器故障诊断方法 被引量:1
15
作者 叶李敏 李敬兆 《兰州文理学院学报(自然科学版)》 2024年第1期82-88,共7页
电力变压器是电力系统的重要电气设备之一,对变压器进行在线故障诊断是降低电力系统运维成本、提高电力系统稳定性的关键措施.基于电力变压器运行时的音频信息,提出音频信号动态特征重组和TCN-Attention模型实现变压器典型故障的精准识... 电力变压器是电力系统的重要电气设备之一,对变压器进行在线故障诊断是降低电力系统运维成本、提高电力系统稳定性的关键措施.基于电力变压器运行时的音频信息,提出音频信号动态特征重组和TCN-Attention模型实现变压器典型故障的精准识别.首先,分析变压器音频信号的SRA、RMS、峭度和裕度特征;然后,根据特征与变压器故障之间的相关性、鲁棒性和时序单调性实现不同特征的加权融合,得到变压器音频信号的综合特征;最后,设计TCN-Attention模型分析变压器音频特征从而实现故障诊断,并基于注意力机制增强音频特征中的重要信息,以提升变压器故障的识别准确率.本文采集了变压器在正常运行、绕组故障和铁芯故障3种状态下的音频信号构成数据集,对所提方法进行验证.实验结果表明,本文方法根据变压器音频信号进行故障诊断的准确率可达90%以上,实现了变压器故障的智能诊断,对保障电力系统稳定运行具有重要意义. 展开更多
关键词 电力变压器 音频信号 故障诊断 动态特征重组 tcn-Attention
下载PDF
A multi-source information fusion layer counting method for penetration fuze based on TCN-LSTM
16
作者 Yili Wang Changsheng Li Xiaofeng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期463-474,共12页
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ... When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves. 展开更多
关键词 Penetration fuze Temporal convolutional network(tcn) Long short-term memory(LSTM) Layer counting Multi-source fusion
下载PDF
基于MTCN-Informer的铁矿球团工艺预测模型
17
作者 廖雪超 朱晨辉 +2 位作者 赵昊裔 向桂宏 刘宗宇 《计算机技术与发展》 2024年第9期188-194,共7页
成品球团流量的预测是生产过程的关键,它决定着整个生产的效率和产量。铁矿球团链箅机—回转窑是生产铁矿石制备高品质铁合金的重要工艺过程之一,具有大时滞、参数庞杂、耦合关系复杂等特点,且成品球团流量波动剧烈,使球团流量难以预测... 成品球团流量的预测是生产过程的关键,它决定着整个生产的效率和产量。铁矿球团链箅机—回转窑是生产铁矿石制备高品质铁合金的重要工艺过程之一,具有大时滞、参数庞杂、耦合关系复杂等特点,且成品球团流量波动剧烈,使球团流量难以预测。为此,该文使用移动平均滤波器来平滑波动的数据,互信息法对庞杂的参数做特征选择,再利用基于自注意力机制的Informer球团流量预测模型,其降低传统自注意力机制的时间复杂度,提高了模型训练效率。同时,针对Informer模型的概率稀疏自注意力机制难以把握长时间序列波动的问题,通过TCN时间卷积网络来提取长时间序列的扩展信息依赖,同时结合Informer编码解码网络来处理上下文的信息,从而完成球团流量的精确预测。通过对工厂实际数据进行实验分析可知,与循环神经网络这类传统的深度学习模型相比,所提集成模型在预测精度、稳定性方面均为最优。 展开更多
关键词 球团流量预测 特征选择 时间卷积网络 编码解码网络 自注意力机制
下载PDF
基于TCN-自适应的地下洞室围岩变形异常数据识别
18
作者 吴忠明 李天述 +3 位作者 张波 周明 张瀚 周靖人 《人民长江》 北大核心 2024年第8期216-221,共6页
水电站地下洞室围岩变形数据具有变化不确定、序列样本短等特点,传统的异常识别方法漏识率、误判率较高。随着智能技术的发展,通过神经网络建立更加可靠的异常识别方法是目前研究的热点,而传统的神经网络存在时序关联性不强和计算模型... 水电站地下洞室围岩变形数据具有变化不确定、序列样本短等特点,传统的异常识别方法漏识率、误判率较高。随着智能技术的发展,通过神经网络建立更加可靠的异常识别方法是目前研究的热点,而传统的神经网络存在时序关联性不强和计算模型庞杂等问题。为此,提出了基于时域卷积神经网络(TCN)及标准自适应的地下洞室异常数据识别算法,该算法利用TCN技术,考虑序列的前后关系,建立了更为可靠的序列模型;同时针对地下洞室监测数据特征,通过考虑误差中位数、数据波动和仪器精度3个方面,突现自适应匹配最优识别准则。将该算法应用在叶巴滩水电站地下洞室围岩变形的异常数据识别中,证明了其可有效避免梯度爆炸、消失,模型耗时较长等问题,极大地提高了异常值分析效率和识别率。相关经验可供类似工程异常监测数据识别时借鉴。 展开更多
关键词 异常数据识别 地下洞室 深度学习 时域卷积神经网络 标准自适应
下载PDF
基于TCN-GRU的Handle标识解析系统负载均衡算法 被引量:1
19
作者 宋继勐 周春雷 +3 位作者 沈子奇 余晗 张伟阳 林兵 《福建师范大学学报(自然科学版)》 CAS 北大核心 2024年第2期64-73,共10页
数联网技术是解决数据管理困难及数据孤岛等问题的关键。近年来,随着数联网技术的飞速发展,Handle系统作为数联网标识解析领域中最具有代表性的系统得以快速落地。然而,Handle标识注册量和解析请求量的快速增长使得Handle系统缓存/递归... 数联网技术是解决数据管理困难及数据孤岛等问题的关键。近年来,随着数联网技术的飞速发展,Handle系统作为数联网标识解析领域中最具有代表性的系统得以快速落地。然而,Handle标识注册量和解析请求量的快速增长使得Handle系统缓存/递归解析服务节点的解析请求压力加大,且难以保证标识解析请求的服务质量。针对上述问题,提出一种基于TCN-GRU的缓存/递归解析服务节点的负载均衡算法,旨在优化缓存/递归解析服务节点的标识解析效率。首先,将用户的解析请求合理地分配到缓存/递归解析服务节点的服务器集群当中,以提升服务器集群整体的工作效率和吞吐量;其次,基于Handle系统中节点的层级架构,考虑到循环神经网络中普遍存在的梯度弥散问题,引入TCN时序神经网络,有助于提取服务器集群负载的时序性信息。相较于传统的负载均衡算法,所提算法根据服务器负载状况动态调整负载转发策略,服务器平均响应时间缩短50%左右,吞吐率提高40%左右,请求失败次数大幅减少。 展开更多
关键词 数联网 HANDLE 标识解析 tcn-GRU 负载均衡
下载PDF
数据缺失下SGAIN融合TCN预测滚动轴承剩余寿命
20
作者 刘静涛 邱明 +2 位作者 李军星 刘志卫 高锐 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第8期240-247,共8页
由于网络传输故障和传感器漏读会引起数据缺失问题。为了在数据缺失条件下能够较准确地预测滚动轴承使用寿命,论文给出了一种将精简生成对抗插补网络(SGAIN)与时间卷积网络(TCN)相融合的剩余寿命预测(RUL)方法。首先,通过SGAIN算法学习... 由于网络传输故障和传感器漏读会引起数据缺失问题。为了在数据缺失条件下能够较准确地预测滚动轴承使用寿命,论文给出了一种将精简生成对抗插补网络(SGAIN)与时间卷积网络(TCN)相融合的剩余寿命预测(RUL)方法。首先,通过SGAIN算法学习缺失数据集的分布规律,掌握已有数据和缺失数据的关联,对缺失数据进行插补填充。其次,使用TCN网络建立轴承寿命预测模型,运用插补完成的数据集实现数据缺失下滚动轴承的剩余寿命预测。最后,借助于公开数据集将SGAIN插补方法与其他插补方法进行对比,揭示了SGAIN插补方法的优越性。同时,选择20%缺失率下的轴承缺失数据做出预测,插补后寿命预测结果的得分达到了0.7222,与缺失未插补数据的预测结果的得分0.5425相比提高了0.1797,接近原始数据寿命预测结果的得分0.7552。这说明了SGAIN融合TCN的滚动轴承剩余寿命预测方法是有效的。 展开更多
关键词 滚动轴承 数据缺失 精简对抗生成插补网络 时间卷积网络 寿命预测
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部