期刊文献+
共找到774,689篇文章
< 1 2 250 >
每页显示 20 50 100
Influencer identification of dynamical networks based on an information entropy dimension reduction method
1
作者 段东立 纪思源 袁紫薇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期375-384,共10页
Identifying critical nodes or sets in large-scale networks is a fundamental scientific problem and one of the key research directions in the fields of data mining and network science when implementing network attacks,... Identifying critical nodes or sets in large-scale networks is a fundamental scientific problem and one of the key research directions in the fields of data mining and network science when implementing network attacks, defense, repair and control.Traditional methods usually begin from the centrality, node location or the impact on the largest connected component after node destruction, mainly based on the network structure.However, these algorithms do not consider network state changes.We applied a model that combines a random connectivity matrix and minimal low-dimensional structures to represent network connectivity.By using mean field theory and information entropy to calculate node activity,we calculated the overlap between the random parts and fixed low-dimensional parts to quantify the influence of node impact on network state changes and ranked them by importance.We applied this algorithm and the proposed importance algorithm to the overall analysis and stratified analysis of the C.elegans neural network.We observed a change in the critical entropy of the network state and by utilizing the proposed method we can calculate the nodes that indirectly affect muscle cells through neural layers. 展开更多
关键词 dynamical networks network influencer low-dimensional dynamics network disintegration
下载PDF
Spontaneous Recovery in Directed Dynamical Networks
2
作者 Xueming Liu Xian Yan H.Eugene Stanley 《Engineering》 SCIE EI CAS CSCD 2024年第6期208-214,共7页
Complex networked systems,which range from biological systems in the natural world to infrastructure systems in the human-made world,can exhibit spontaneous recovery after a failure;for example,a brain may spontaneous... Complex networked systems,which range from biological systems in the natural world to infrastructure systems in the human-made world,can exhibit spontaneous recovery after a failure;for example,a brain may spontaneously return to normal after a seizure,and traffic flow can become smooth again after a jam.Previous studies on the spontaneous recovery of dynamical networks have been limited to undirected networks.However,most real-world networks are directed.To fill this gap,we build a model in which nodes may alternately fail and recover,and we develop a theoretical tool to analyze the recovery properties of directed dynamical networks.We find that the tool can accurately predict the final fraction of active nodes,and the prediction accuracy decreases as the fraction of bidirectional links in the network increases,which emphasizes the importance of directionality in network dynamics.Due to different initial states,directed dynamical networks may show alternative stable states under the same control parameter,exhibiting hysteresis behavior.In addition,for networks with finite sizes,the fraction of active nodes may jump back and forth between high and low states,mimicking repetitive failure-recovery processes.These findings could help clarify the system recovery mechanism and enable better design of networked systems with high resilience. 展开更多
关键词 network resilience Directed dynamical networks Spontaneous recovery
下载PDF
Target layer state estimation in multi-layer complex dynamical networks considering nonlinear node dynamics
3
作者 吴亚勇 王欣伟 蒋国平 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期245-252,共8页
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ... In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method. 展开更多
关键词 multi-layer complex dynamical network nonlinear node dynamics target state estimation functional state observer
下载PDF
Dynamic analysis of major public health emergency transmission considering the dual-layer coupling of community–resident complex networks
4
作者 杨鹏 范如国 +1 位作者 王奕博 张应青 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期158-169,共12页
We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It cha... We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It characterizes the process of infectious disease transmission among residents between communities through the SE2IHR model considering two types of infectors. By depicting a more fine-grained social structure and combining further simulation experiments, the study validates the crucial role of various prevention and control measures implemented by communities as primary executors in controlling the epidemic. Research shows that the geographical boundaries of communities and the social interaction patterns of residents have a significant impact on the spread of the epidemic, where early detection, isolation and treatment strategies at community level are essential for controlling the spread of the epidemic. In addition, the study explores the collaborative governance model and institutional advantages of communities and residents in epidemic prevention and control. 展开更多
关键词 propagation dynamics complex networks public health events community structure
下载PDF
Multi-head neural networks for simulating particle breakage dynamics
5
作者 Abhishek Gupta Barada Kanta Mishra 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第2期130-141,共12页
The breakage of brittle particulate materials into smaller particles under compressive or impact loads can be modelled as an instantiation of the population balance integro-differential equation.In this paper,the emer... The breakage of brittle particulate materials into smaller particles under compressive or impact loads can be modelled as an instantiation of the population balance integro-differential equation.In this paper,the emerging computational science paradigm of physics-informed neural networks is studied for the first time for solving both linear and nonlinear variants of the governing dynamics.Unlike conventional methods,the proposed neural network provides rapid simulations of arbitrarily high resolution in particle size,predicting values on arbitrarily fine grids without the need for model retraining.The network is assigned a simple multi-head architecture tailored to uphold monotonicity of the modelled cumulative distribution function over particle sizes.The method is theoretically analyzed and validated against analytical results before being applied to real-world data of a batch grinding mill.The agreement between laboratory data and numerical simulation encourages the use of physics-informed neural nets for optimal planning and control of industrial comminution processes. 展开更多
关键词 Particle breakage dynamics Population balance equation Physics-informed neural networks
下载PDF
Set-Membership Filtering Approach to Dynamic Event-Triggered Fault Estimation for a Class of Nonlinear Time-Varying Complex Networks
6
作者 Xiaoting Du Lei Zou Maiying Zhong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期638-648,共11页
The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered ... The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator. 展开更多
关键词 dynamic event-triggered mechanism(DETM) fault estimation nonlinear time-varying complex networks set-member-ship filtering unknown input observer
下载PDF
Exponential Synchronization of Delayed Stochastic Complex Dynamical Networks via Hybrid Impulsive Control
7
作者 Yao Cui Pei Cheng Xiaohua Ge 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期785-787,共3页
Dear Editor,This letter addresses the synchronization problem of a class of delayed stochastic complex dynamical networks consisting of multiple drive and response nodes.The aim is to achieve mean square exponential s... Dear Editor,This letter addresses the synchronization problem of a class of delayed stochastic complex dynamical networks consisting of multiple drive and response nodes.The aim is to achieve mean square exponential synchronization for the drive-response nodes despite the simultaneous presence of time delays and stochastic noises in node dynamics. 展开更多
关键词 dynamicS STOCHASTIC LETTER
下载PDF
Resilient Satellite Communication Networks Towards Highly Dynamic and Highly Reliable Transmission
8
《China Communications》 SCIE CSCD 2024年第2期I0002-I0004,共3页
As the key infrastructure of space-ground integrated information networks,satellite communication networks provide high-speed and reliable information transmission.In order to meet the burgeoning service demands of th... As the key infrastructure of space-ground integrated information networks,satellite communication networks provide high-speed and reliable information transmission.In order to meet the burgeoning service demands of the IoT and the Internet,the low-latency LEO satellite network has developed rapidly.However,LEO satellites face inherent problems such as small coverage,fast moving speed and short overhead time,which will be more severe when serving high-dynamic users,e.g.high-speed rails and airplanes.The heterogeneous network composed of GEO,MEO and LEO satellites can provide various services,whose network management and resource allocation are also more challenging. 展开更多
关键词 network IOT HIGHLY
下载PDF
Dynamical behaviors in discrete memristor-coupled small-world neuronal networks
9
作者 鲁婕妤 谢小华 +3 位作者 卢亚平 吴亚联 李春来 马铭磷 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期729-734,共6页
The brain is a complex network system in which a large number of neurons are widely connected to each other and transmit signals to each other.The memory characteristic of memristors makes them suitable for simulating... The brain is a complex network system in which a large number of neurons are widely connected to each other and transmit signals to each other.The memory characteristic of memristors makes them suitable for simulating neuronal synapses with plasticity.In this paper,a memristor is used to simulate a synapse,a discrete small-world neuronal network is constructed based on Rulkov neurons and its dynamical behavior is explored.We explore the influence of system parameters on the dynamical behaviors of the discrete small-world network,and the system shows a variety of firing patterns such as spiking firing and triangular burst firing when the neuronal parameterαis changed.The results of a numerical simulation based on Matlab show that the network topology can affect the synchronous firing behavior of the neuronal network,and the higher the reconnection probability and number of the nearest neurons,the more significant the synchronization state of the neurons.In addition,by increasing the coupling strength of memristor synapses,synchronization performance is promoted.The results of this paper can boost research into complex neuronal networks coupled with memristor synapses and further promote the development of neuroscience. 展开更多
关键词 small-world networks Rulkov neurons MEMRISTOR SYNCHRONIZATION
下载PDF
Dynamic Routing of Multiple QoS-Required Flows in Cloud-Edge Autonomous Multi-Domain Data Center Networks
10
作者 Shiyan Zhang Ruohan Xu +3 位作者 Zhangbo Xu Cenhua Yu Yuyang Jiang Yuting Zhao 《Computers, Materials & Continua》 SCIE EI 2024年第2期2287-2308,共22页
The 6th generation mobile networks(6G)network is a kind of multi-network interconnection and multi-scenario coexistence network,where multiple network domains break the original fixed boundaries to form connections an... The 6th generation mobile networks(6G)network is a kind of multi-network interconnection and multi-scenario coexistence network,where multiple network domains break the original fixed boundaries to form connections and convergence.In this paper,with the optimization objective of maximizing network utility while ensuring flows performance-centric weighted fairness,this paper designs a reinforcement learning-based cloud-edge autonomous multi-domain data center network architecture that achieves single-domain autonomy and multi-domain collaboration.Due to the conflict between the utility of different flows,the bandwidth fairness allocation problem for various types of flows is formulated by considering different defined reward functions.Regarding the tradeoff between fairness and utility,this paper deals with the corresponding reward functions for the cases where the flows undergo abrupt changes and smooth changes in the flows.In addition,to accommodate the Quality of Service(QoS)requirements for multiple types of flows,this paper proposes a multi-domain autonomous routing algorithm called LSTM+MADDPG.Introducing a Long Short-Term Memory(LSTM)layer in the actor and critic networks,more information about temporal continuity is added,further enhancing the adaptive ability changes in the dynamic network environment.The LSTM+MADDPG algorithm is compared with the latest reinforcement learning algorithm by conducting experiments on real network topology and traffic traces,and the experimental results show that LSTM+MADDPG improves the delay convergence speed by 14.6%and delays the start moment of packet loss by 18.2%compared with other algorithms. 展开更多
关键词 MULTI-DOMAIN data center networks AUTONOMOUS ROUTING
下载PDF
A Fuzzy Trust Management Mechanism with Dynamic Behavior Monitoring for Wireless Sensor Networks
11
作者 Fu Shiming Zhang Ping Shi Xuehong 《China Communications》 SCIE CSCD 2024年第5期177-189,共13页
Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vul... Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vulnerable to various attacks.Traditional encryption and authentication mechanisms cannot prevent attacks launched by internal malicious nodes.The trust-based security mechanism is usually adopted to solve this problem in WSNs.However,the behavioral evidence used for trust estimation presents some uncertainties due to the open wireless medium and the inexpensive sensor nodes.Moreover,how to efficiently collect behavioral evidences are rarely discussed.To address these issues,in this paper,we present a trust management mechanism based on fuzzy logic and a cloud model.First,a type-II fuzzy logic system is used to preprocess the behavioral evidences and alleviate uncertainty.Then,the cloud model is introduced to estimate the trust values for sensor nodes.Finally,a dynamic behavior monitoring protocol is proposed to provide a balance between energy conservation and safety assurance.Simulation results demonstrate that our trust management mechanism can effectively protect the network from internal malicious attacks while enhancing the energy efficiency of behavior monitoring. 展开更多
关键词 behavior monitoring CLOUD FUZZY TRUST wireless sensor networks
下载PDF
A Self-Attention Based Dynamic Resource Management for Satellite-Terrestrial Networks
12
作者 Lin Tianhao Luo Zhiyong 《China Communications》 SCIE CSCD 2024年第4期136-150,共15页
The satellite-terrestrial networks possess the ability to transcend geographical constraints inherent in traditional communication networks,enabling global coverage and offering users ubiquitous computing power suppor... The satellite-terrestrial networks possess the ability to transcend geographical constraints inherent in traditional communication networks,enabling global coverage and offering users ubiquitous computing power support,which is an important development direction of future communications.In this paper,we take into account a multi-scenario network model under the coverage of low earth orbit(LEO)satellite,which can provide computing resources to users in faraway areas to improve task processing efficiency.However,LEO satellites experience limitations in computing and communication resources and the channels are time-varying and complex,which makes the extraction of state information a daunting task.Therefore,we explore the dynamic resource management issue pertaining to joint computing,communication resource allocation and power control for multi-access edge computing(MEC).In order to tackle this formidable issue,we undertake the task of transforming the issue into a Markov decision process(MDP)problem and propose the self-attention based dynamic resource management(SABDRM)algorithm,which effectively extracts state information features to enhance the training process.Simulation results show that the proposed algorithm is capable of effectively reducing the long-term average delay and energy consumption of the tasks. 展开更多
关键词 mobile edge computing resource management satellite-terrestrial networks self-attention
下载PDF
Predicting Traffic Flow Using Dynamic Spatial-Temporal Graph Convolution Networks
13
作者 Yunchang Liu Fei Wan Chengwu Liang 《Computers, Materials & Continua》 SCIE EI 2024年第3期4343-4361,共19页
Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of... Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between nodes.However,due to the time-varying spatial correlation of the traffic network,there is no fixed node relationship,and these methods cannot effectively integrate the temporal and spatial features.This paper proposes a novel temporal-spatial dynamic graph convolutional network(TSADGCN).The dynamic time warping algorithm(DTW)is introduced to calculate the similarity of traffic flow sequence among network nodes in the time dimension,and the spatiotemporal graph of traffic flow is constructed to capture the spatiotemporal characteristics and dependencies of traffic flow.By combining graph attention network and time attention network,a spatiotemporal convolution block is constructed to capture spatiotemporal characteristics of traffic data.Experiments on open data sets PEMSD4 and PEMSD8 show that TSADGCN has higher prediction accuracy than well-known traffic flow prediction algorithms. 展开更多
关键词 Intelligent transportation graph convolutional network traffic flow DTW algorithm attention mechanism
下载PDF
Insights into microbiota community dynamics and flavor development mechanism during golden pomfret(Trachinotus ovatus)fermentation based on single-molecule real-time sequencing and molecular networking analysis 被引量:1
14
作者 Yueqi Wang Qian Chen +5 位作者 Huan Xiang Dongxiao Sun-Waterhouse Shengjun Chen Yongqiang Zhao Laihao Li Yanyan Wu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期101-114,共14页
Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the ... Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the complex microbiota and the dynamic changes in microbial community and flavor compounds during fish fermentation.Single-molecule real-time sequencing and molecular networking analysis revealed the correlations among different microbial genera and the relationships between microbial taxa and volatile compounds.Mechanisms underlying flavor development were also elucidated via KEGG based functional annotations.Clostridium,Shewanella,and Staphylococcus were the dominant microbial genera.Forty-nine volatile compounds were detected in the fermented fish samples,with thirteen identified as characteristic volatile compounds(ROAV>1).Volatile profiles resulted from the interactions among the microorganisms and derived enzymes,with the main metabolic pathways being amino acid biosynthesis/metabolism,carbon metabolism,and glycolysis/gluconeogenesis.This study demonstrated the approaches for distinguishing key microbiota associated with volatile compounds and monitoring the industrial production of high-quality fermented fish products. 展开更多
关键词 Fermented golden pomfret Microbiota community Volatile compound Co-occurrence network Metabolic pathway
下载PDF
A Neural-network-based Alternative Scheme to Include Nonhydrostatic Processes in an Atmospheric Dynamical Core
15
作者 Yang XIA Bin WANG +13 位作者 Lijuan LI Li LIU Jianghao LI Li DONG Shiming XU Yiyuan LI Wenwen XIA Wenyu HUANG Juanjuan LIU Yong WANG Hongbo LIU Ye PU Yujun HE Kun XIA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1083-1099,I0002,I0003,共19页
Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostat... Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostatic solver in an atmospheric dynamical core.The NAS is designed to replace this solver,which can be incorporated into any hydrostatic models so that existing well-developed hydrostatic models can effectively serve for a longer time.Recent advances in machine learning(ML)provide a potential tool for capturing the main complicated nonlinear-nonhydrostatic relationship.In this study,an ML approach called a neural network(NN)was adopted to select leading input features and develop the NAS.The NNs were trained and evaluated with 12-day simulation results of dry baroclinic-wave tests by the Weather Research and Forecasting(WRF)model.The forward time difference of the nonhydrostatic tendency was used as the target variable,and the five selected features were the nonhydrostatic tendency at the last time step,and four hydrostatic variables at the current step including geopotential height,pressure in two different forms,and potential temperature,respectively.Finally,a practical NAS was developed with these features and trained layer by layer at a 20-km horizontal resolution,which can accurately reproduce the temporal variation and vertical distribution of the nonhydrostatic tendency.Corrected by the NN-based NAS,the improved hydrostatic solver at different horizontal resolutions can run stably for at least one month and effectively reduce most of the nonhydrostatic errors in terms of system bias,anomaly root-mean-square error,and the error of the wave spatial pattern,which proves the feasibility and superiority of this scheme. 展开更多
关键词 neural network nonhydrostatic alternative scheme atmospheric model dynamical core
下载PDF
The Effect of Key Nodes on theMalware Dynamics in the Industrial Control Network
16
作者 Qiang Fu JunWang +1 位作者 Changfu Si Jiawei Liu 《Computers, Materials & Continua》 SCIE EI 2024年第4期329-349,共21页
As industrialization and informatization becomemore deeply intertwined,industrial control networks have entered an era of intelligence.The connection between industrial control networks and the external internet is be... As industrialization and informatization becomemore deeply intertwined,industrial control networks have entered an era of intelligence.The connection between industrial control networks and the external internet is becoming increasingly close,which leads to frequent security accidents.This paper proposes a model for the industrial control network.It includes a malware containment strategy that integrates intrusion detection,quarantine,and monitoring.Basedonthismodel,the role of keynodes in the spreadofmalware is studied,a comparisonexperiment is conducted to validate the impact of the containment strategy.In addition,the dynamic behavior of the model is analyzed,the basic reproduction number is computed,and the disease-free and endemic equilibrium of the model is also obtained by the basic reproduction number.Moreover,through simulation experiments,the effectiveness of the containment strategy is validated,the influence of the relevant parameters is analyzed,and the containment strategy is optimized.In otherwords,selective immunity to key nodes can effectively suppress the spread ofmalware andmaintain the stability of industrial control systems.The earlier the immunization of key nodes,the better.Once the time exceeds the threshold,immunizing key nodes is almost ineffective.The analysis provides a better way to contain the malware in the industrial control network. 展开更多
关键词 Key nodes dynamic model industrial control network SIMULATION
下载PDF
Dynamic interwell connectivity analysis of multi-layer waterflooding reservoirs based on an improved graph neural network
17
作者 Zhao-Qin Huang Zhao-Xu Wang +4 位作者 Hui-Fang Hu Shi-Ming Zhang Yong-Xing Liang Qi Guo Jun Yao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1062-1080,共19页
The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oi... The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oilfields generally have the characteristics of thin and many layers, so multi-layer joint production is usually adopted. It remains a challenge to ensure the accuracy of splitting and dynamic connectivity in each layer of the injection-production wells with limited field data. The three-dimensional well pattern of multi-layer reservoir and the relationship between injection-production wells can be equivalent to a directional heterogeneous graph. In this paper, an improved graph neural network is proposed to construct an interacting process mimics the real interwell flow regularity. In detail, this method is used to split injection and production rates by combining permeability, porosity and effective thickness, and to invert the dynamic connectivity in each layer of the injection-production wells by attention mechanism.Based on the material balance and physical information, the overall connectivity from the injection wells,through the water injection layers to the production layers and the output of final production wells is established. Meanwhile, the change of well pattern caused by perforation, plugging and switching of wells at different times is achieved by updated graph structure in spatial and temporal ways. The effectiveness of the method is verified by a combination of reservoir numerical simulation examples and field example. The method corresponds to the actual situation of the reservoir, has wide adaptability and low cost, has good practical value, and provides a reference for adjusting the injection-production relationship of the reservoir and the development of the remaining oil. 展开更多
关键词 Graph neural network dynamic interwell connectivity Production-injection splitting Attention mechanism Multi-layer reservoir
下载PDF
Exploring the molecular mechanism of action of curcumin for the treatment of diabetic retinopathy,using network pharmacology,molecular docking,and molecular dynamics simulation
18
作者 Yuan-Yuan Gan Yan-Mei Xu +4 位作者 Quan Shu Qi-Zhi Huang Tian-Long Zhou Ju-Fang Liu Wei Yu 《Integrative Medicine Discovery》 2024年第8期1-10,共10页
Background:Based on network pharmacology and molecular docking,the present study investigated the mechanism of curcumin(CUR)in diabetic retinopathy treatment.Methods:Based on the DisGeNET,Swiss TargetPrediction,GeneCa... Background:Based on network pharmacology and molecular docking,the present study investigated the mechanism of curcumin(CUR)in diabetic retinopathy treatment.Methods:Based on the DisGeNET,Swiss TargetPrediction,GeneCards,Online Mendelian Inheritance in Man,Gene Expression Omnibus,and Comparative Toxicogenomics Database,the intersection core targets of CUR and diabetic retinopathy were identified.The intersection target was imported into the STRING database to obtain the protein-protein interaction map.According to the Database for Annotation,Visualization and Integrated Discovery database,the intersected targets were enriched in Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes pathways.Then Cytoscape 3.9.1 is used to make the drug-target-disease-pathway network.The mechanism of CUR and diabetic retinopathy was further verified by molecular docking and molecular dynamics simulation.Results:There were 203 intersecting targets of CUR and diabetic retinopathy identified.1320 GO entries were enriched for GO functions,which were primarily involved in the composition of cells such as identical protein binding,protein binding,enzyme binding,etc.It was found that 175 pathways were enriched using Kyoto Encyclopedia of Genes and Genomes pathway enrichment methods,which were mainly included in the lipid and atherosclerosis,AGE-RAGE signaling pathway in diabetic complications,pathways in cancer,etc.In the molecular docking analysis,CUR was found to have a good ability to bind to the core targets of albumin,IL-1B,and IL-6.The binding of albumin to CUR was further verified by molecular dynamics simulation.Conclusion:As a result of this study,CUR may exert a role in the treatment of diabetic retinopathy through multi-target and multi-pathway regulation,which indicates a possible direction of future research. 展开更多
关键词 CURCUMIN diabetic retinopathy network pharmacology molecular docking molecular dynamics simulation
下载PDF
Non-linear dynamic state-space network modeling for decoding neurodegeneration
19
作者 Venkata C.Chirumamilla Chi Wang Ip +4 位作者 Martin Reich Robert Peach Jens Volkmann Bahman Nasseroleslami Muthuraman Muthuraman 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1879-1880,共2页
Neurodegenerative disorders represent a pervasive global health challenge,yet therapeutic options remain conspicuously limited.These disorders are inherently dynamic processes within the central nervous system,unfoldi... Neurodegenerative disorders represent a pervasive global health challenge,yet therapeutic options remain conspicuously limited.These disorders are inherently dynamic processes within the central nervous system,unfolding across distinct sub-stages:initial structural neuronal alterations(sub-stage 1),functional impairment(sub-stage 2),and culminating in neuronal death(sub-stage 3). 展开更多
关键词 alterations IMPAIRMENT dynamic
下载PDF
Superiority of a Convolutional Neural Network Model over Dynamical Models in Predicting Central Pacific ENSO
20
作者 Tingyu WANG Ping HUANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期141-154,共14页
The application of deep learning is fast developing in climate prediction,in which El Ni?o–Southern Oscillation(ENSO),as the most dominant disaster-causing climate event,is a key target.Previous studies have shown th... The application of deep learning is fast developing in climate prediction,in which El Ni?o–Southern Oscillation(ENSO),as the most dominant disaster-causing climate event,is a key target.Previous studies have shown that deep learning methods possess a certain level of superiority in predicting ENSO indices.The present study develops a deep learning model for predicting the spatial pattern of sea surface temperature anomalies(SSTAs)in the equatorial Pacific by training a convolutional neural network(CNN)model with historical simulations from CMIP6 models.Compared with dynamical models,the CNN model has higher skill in predicting the SSTAs in the equatorial western-central Pacific,but not in the eastern Pacific.The CNN model can successfully capture the small-scale precursors in the initial SSTAs for the development of central Pacific ENSO to distinguish the spatial mode up to a lead time of seven months.A fusion model combining the predictions of the CNN model and the dynamical models achieves higher skill than each of them for both central and eastern Pacific ENSO. 展开更多
关键词 ENSO diversity deep learning ENSO prediction dynamical forecast system
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部