Arrhythmia is ubiquitous worldwide and cardiologists tend to provide solutions from the recent advancements in medicine.Detecting arrhythmia from ECG signals is considered a standard approach and hence,automating this...Arrhythmia is ubiquitous worldwide and cardiologists tend to provide solutions from the recent advancements in medicine.Detecting arrhythmia from ECG signals is considered a standard approach and hence,automating this process would aid the diagnosis by providing fast,costefficient,and accurate solutions at scale.This is executed by extracting the definite properties from the individual patterns collected from Electrocardiography(ECG)signals causing arrhythmia.In this era of applied intelligence,automated detection and diagnostic solutions are widely used for their spontaneous and robust solutions.In this research,our contributions are two-fold.Firstly,the Dual-Tree Complex Wavelet Transform(DT-CWT)method is implied to overhaul shift-invariance and aids signal reconstruction to extract significant features.Next,A neural attention mechanism is implied to capture temporal patterns from the extracted features of the ECG signal to discriminate distinct classes of arrhythmia and is trained end-to-end with the finest parameters.To ensure that the model’s generalizability,a set of five traintest variants are implied.The proposed model attains the highest accuracy of 98.5%for classifying 8 variants of arrhythmia on the MIT-BIH dataset.To test the resilience of the model,the unseen(test)samples are increased by 5x and the deviation in accuracy score and MSE was 0.12%and 0.1%respectively.Further,to assess the diagnostic model performance,AUC-ROC curves are plotted.At every test level,the proposed model is capable of generalizing new samples and leverages the advantage to develop a real-world application.As a note,this research is the first attempt to provide neural attention in arrhythmia classification using MIT-BIH ECG signals data with state-of-the-art performance.展开更多
Facial Expression Recognition(FER)has been an interesting area of research in places where there is human-computer interaction.Human psychol-ogy,emotions and behaviors can be analyzed in FER.Classifiers used in FER hav...Facial Expression Recognition(FER)has been an interesting area of research in places where there is human-computer interaction.Human psychol-ogy,emotions and behaviors can be analyzed in FER.Classifiers used in FER have been perfect on normal faces but have been found to be constrained in occluded faces.Recently,Deep Learning Techniques(DLT)have gained popular-ity in applications of real-world problems including recognition of human emo-tions.The human face reflects emotional states and human intentions.An expression is the most natural and powerful way of communicating non-verbally.Systems which form communications between the two are termed Human Machine Interaction(HMI)systems.FER can improve HMI systems as human expressions convey useful information to an observer.This paper proposes a FER scheme called EECNN(Enhanced Convolution Neural Network with Atten-tion mechanism)to recognize seven types of human emotions with satisfying results in its experiments.Proposed EECNN achieved 89.8%accuracy in classi-fying the images.展开更多
Taking Jiuhong Modern Agriculture Demonstration Park of Heilongjiang Province as the base for rice disease image acquisition,a total of 841 images of the four different diseases,including rice blast,stripe leaf blight...Taking Jiuhong Modern Agriculture Demonstration Park of Heilongjiang Province as the base for rice disease image acquisition,a total of 841 images of the four different diseases,including rice blast,stripe leaf blight,red blight and bacterial brown spot,were obtained.In this study,an interleaved attention neural network(IANN)was proposed to realize the recognition of rice disease images and an interleaved group convolutions(IGC)network was introduced to reduce the number of convolutional parameters,which realized the information interaction between channels.Based on the convolutional block attention module(CBAM),attention was paid to the features of results of the primary group convolution in the cross-group convolution to improve the classification performance of the deep learning model.The results showed that the classification accuracy of IANN was 96.14%,which was 4.72%higher than that of the classical convolutional neural network(CNN).This study showed a new idea for the efficient training of neural networks in the case of small samples and provided a reference for the image recognition and diagnosis of rice and other crop diseases.展开更多
Attention mechanism combined with convolutional neural network(CNN) achieves promising performance for magnetic resonance imaging(MRI) image segmentation,however these methods only learn attention weights from single ...Attention mechanism combined with convolutional neural network(CNN) achieves promising performance for magnetic resonance imaging(MRI) image segmentation,however these methods only learn attention weights from single scale,resulting in incomplete attention learning.A novel method named completed attention convolutional neural network(CACNN) is proposed for MRI image segmentation.Specifically,the channel-wise attention block(CWAB) and the pixel-wise attention block(PWAB) are designed to learn attention weights from the aspects of channel and pixel levels.As a result,completed attention weights are obtained,which is beneficial to discriminative feature learning.The method is verified on two widely used datasets(HVSMR and MRBrainS),and the experimental results demonstrate that the proposed method achieves better results than the state-of-theart methods.展开更多
Major chronic diseases such as Cardiovascular Disease(CVD),diabetes,and cancer impose a significant burden on people and healthcare systems around the globe.Recently,Deep Learning(DL)has shown great potential for the ...Major chronic diseases such as Cardiovascular Disease(CVD),diabetes,and cancer impose a significant burden on people and healthcare systems around the globe.Recently,Deep Learning(DL)has shown great potential for the development of intelligentmobile Health(mHealth)interventions for chronic diseases that could revolutionize the delivery of health care anytime,anywhere.The aimof this study is to present a systematic review of studies that have used DL based on mHealth data for the diagnosis,prognosis,management,and treatment of major chronic diseases and advance our understanding of the progress made in this rapidly developing field.Type 2 Diabetes Mellitus(T2DMs)is a regular chronic disorder that is caused by the secretion of insulin,which leads to serious death-related issues and the most complicated ones.Coronary Heart Disease(CHD)is the most frequent issue related to T2DM patients.The major concern is recognizing the high possibility of CHD complications,yet the model is not available to identify it.This work introduces a deep learning technique that can predict heart disease effectively using a hybrid model,which integrates DNNs(Deep Neural Networks)with a Multi-Head Attention Model called MADNN.The scheme canbedesignedtoautomatically learnthe best-quality features fromElectronic Health Records(EHRs),and effectively combine heterogeneous and time-sequencedmedical data for predicting the risk of CVD.The analysis is done using the Kaggle dataset.The outcomes prove that the MADNN has improved accuracy by about 95%and indicates the precise accuracy is higher for the disease compared with SVM,CNN and ANN.展开更多
Attention deficit hyperactivity disorder(ADHD) is a pervasive psychiatric disorder that affects both children and adults. Adult male and female patients with ADHD are differentially affected, but few studies have ex...Attention deficit hyperactivity disorder(ADHD) is a pervasive psychiatric disorder that affects both children and adults. Adult male and female patients with ADHD are differentially affected, but few studies have explored the differences. The purpose of this study was to quantify differences between adult male and female patients with ADHD based on neuroimaging and connectivity analysis. Resting-state functional magnetic resonance imaging scans were obtained and preprocessed in 82 patients. Group-wise differences between male and female patients were quantified using degree centrality for different brain regions. The medial-, middle-, and inferior-frontal gyrus, superior parietal lobule, precuneus, supramarginal gyrus, superior- and middle-temporal gyrus, middle occipital gyrus, and cuneus were identified as regions with significant group-wise differences. The identified regions were correlated with clinical scores reflecting depression and anxiety and significant correlations were found. Adult ADHD patients exhibit different levels of depression and anxiety depending on sex, and our study provides insight into how changes in brain circuitry might differentially impact male and female ADHD patients.展开更多
Sensors produce a large amount of multivariate time series data to record the states of Internet of Things(IoT)systems.Multivariate time series timestamp anomaly detection(TSAD)can identify timestamps of attacks and m...Sensors produce a large amount of multivariate time series data to record the states of Internet of Things(IoT)systems.Multivariate time series timestamp anomaly detection(TSAD)can identify timestamps of attacks and malfunctions.However,it is necessary to determine which sensor or indicator is abnormal to facilitate a more detailed diagnosis,a process referred to as fine-grained anomaly detection(FGAD).Although further FGAD can be extended based on TSAD methods,existing works do not provide a quantitative evaluation,and the performance is unknown.Therefore,to tackle the FGAD problem,this paper first verifies that the TSAD methods achieve low performance when applied to the FGAD task directly because of the excessive fusion of features and the ignoring of the relationship’s dynamic changes between indicators.Accordingly,this paper proposes a mul-tivariate time series fine-grained anomaly detection(MFGAD)framework.To avoid excessive fusion of features,MFGAD constructs two sub-models to independently identify the abnormal timestamp and abnormal indicator instead of a single model and then combines the two kinds of abnormal results to detect the fine-grained anomaly.Based on this framework,an algorithm based on Graph Attention Neural Network(GAT)and Attention Convolutional Long-Short Term Memory(A-ConvLSTM)is proposed,in which GAT learns temporal features of multiple indicators to detect abnormal timestamps and A-ConvLSTM captures the dynamic relationship between indicators to identify abnormal indicators.Extensive simulations on a real-world dataset demonstrate that the proposed algorithm can achieve a higher F1 score and hit rate than the extension of existing TSAD methods with the benefit of two independent sub-models for timestamp and indicator detection.展开更多
Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl...Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.展开更多
The impact of pesticides on insect pollinators has caused worldwide concern. Both global bee decline and stopping the use of pesticides may have serious consequences for food security. Automated and accurate predictio...The impact of pesticides on insect pollinators has caused worldwide concern. Both global bee decline and stopping the use of pesticides may have serious consequences for food security. Automated and accurate prediction of chemical poisoning of honey bees is a challenging task owing to a lack of understanding of chemical toxicity and introspection. Deep learning(DL) shows potential utility for general and highly variable tasks across fields. Here, we developed a new DL model of deep graph attention convolutional neural networks(GACNN) with the combination of undirected graph(UG) and attention convolutional neural networks(ACNN) to accurately classify chemical poisoning of honey bees. We used a training dataset of 720 pesticides and an external validation dataset of 90 pesticides, which is one order of magnitude larger than the previous datasets. We tested its performance in two ways: poisonous versus nonpoisonous and GACNN versus other frequently-used machine learning models. The first case represents the accuracy in identifying bee poisonous chemicals. The second represents performance advantages. The GACNN achieved ~6% higher performance for predicting toxic samples and more stable with ~7%Matthews Correlation Coefficient(MCC) higher compared to all tested models, demonstrating GACNN is capable of accurately classifying chemicals and has considerable potential in practical applications.In addition, we also summarized and evaluated the mechanisms underlying the response of honey bees to chemical exposure based on the mapping of molecular similarity. Moreover, our cloud platform(http://beetox.cn) of this model provides low-cost universal access to information, which could vitally enhance environmental risk assessment.展开更多
Due to the popularity of group activities in social media,group recommendation becomes increasingly significant.It aims to pursue a list of preferred items for a target group.Most deep learning-based methods on group ...Due to the popularity of group activities in social media,group recommendation becomes increasingly significant.It aims to pursue a list of preferred items for a target group.Most deep learning-based methods on group recommendation have focused on learning group representations from single interaction between groups and users.However,these methods may suffer from data sparsity problem.Except for the interaction between groups and users,there also exist other interactions that may enrich group representation,such as the interaction between groups and items.Such interactions,which take place in the range of a group,form a local view of a certain group.In addition to local information,groups with common interests may also show similar tastes on items.Therefore,group representation can be conducted according to the similarity among groups,which forms a global view of a certain group.In this paper,we propose a novel global and local information fusion neural network(GLIF)model for group recommendation.In GLIF,an attentive neural network(ANN)activates rich interactions among groups,users and items with respect to forming a group′s local representation.Moreover,our model also leverages ANN to obtain a group′s global representation based on the similarity among different groups.Then,it fuses global and local representations based on attention mechanism to form a group′s comprehensive representation.Finally,group recommendation is conducted under neural collaborative filtering(NCF)framework.Extensive experiments on three public datasets demonstrate its superiority over the state-of-the-art methods for group recommendation.展开更多
基金This research was partially supported by JNTU Hyderabad,India under Grant proceeding number:JNTUH/TEQIP-III/CRS/2019/CSE/08.The authors are grateful for the support provided by the TEQIP-III team.
文摘Arrhythmia is ubiquitous worldwide and cardiologists tend to provide solutions from the recent advancements in medicine.Detecting arrhythmia from ECG signals is considered a standard approach and hence,automating this process would aid the diagnosis by providing fast,costefficient,and accurate solutions at scale.This is executed by extracting the definite properties from the individual patterns collected from Electrocardiography(ECG)signals causing arrhythmia.In this era of applied intelligence,automated detection and diagnostic solutions are widely used for their spontaneous and robust solutions.In this research,our contributions are two-fold.Firstly,the Dual-Tree Complex Wavelet Transform(DT-CWT)method is implied to overhaul shift-invariance and aids signal reconstruction to extract significant features.Next,A neural attention mechanism is implied to capture temporal patterns from the extracted features of the ECG signal to discriminate distinct classes of arrhythmia and is trained end-to-end with the finest parameters.To ensure that the model’s generalizability,a set of five traintest variants are implied.The proposed model attains the highest accuracy of 98.5%for classifying 8 variants of arrhythmia on the MIT-BIH dataset.To test the resilience of the model,the unseen(test)samples are increased by 5x and the deviation in accuracy score and MSE was 0.12%and 0.1%respectively.Further,to assess the diagnostic model performance,AUC-ROC curves are plotted.At every test level,the proposed model is capable of generalizing new samples and leverages the advantage to develop a real-world application.As a note,this research is the first attempt to provide neural attention in arrhythmia classification using MIT-BIH ECG signals data with state-of-the-art performance.
文摘Facial Expression Recognition(FER)has been an interesting area of research in places where there is human-computer interaction.Human psychol-ogy,emotions and behaviors can be analyzed in FER.Classifiers used in FER have been perfect on normal faces but have been found to be constrained in occluded faces.Recently,Deep Learning Techniques(DLT)have gained popular-ity in applications of real-world problems including recognition of human emo-tions.The human face reflects emotional states and human intentions.An expression is the most natural and powerful way of communicating non-verbally.Systems which form communications between the two are termed Human Machine Interaction(HMI)systems.FER can improve HMI systems as human expressions convey useful information to an observer.This paper proposes a FER scheme called EECNN(Enhanced Convolution Neural Network with Atten-tion mechanism)to recognize seven types of human emotions with satisfying results in its experiments.Proposed EECNN achieved 89.8%accuracy in classi-fying the images.
基金Supported by the Heilongjiang Provincial Key Research and Development Program Guidance Project(GZ20210103)。
文摘Taking Jiuhong Modern Agriculture Demonstration Park of Heilongjiang Province as the base for rice disease image acquisition,a total of 841 images of the four different diseases,including rice blast,stripe leaf blight,red blight and bacterial brown spot,were obtained.In this study,an interleaved attention neural network(IANN)was proposed to realize the recognition of rice disease images and an interleaved group convolutions(IGC)network was introduced to reduce the number of convolutional parameters,which realized the information interaction between channels.Based on the convolutional block attention module(CBAM),attention was paid to the features of results of the primary group convolution in the cross-group convolution to improve the classification performance of the deep learning model.The results showed that the classification accuracy of IANN was 96.14%,which was 4.72%higher than that of the classical convolutional neural network(CNN).This study showed a new idea for the efficient training of neural networks in the case of small samples and provided a reference for the image recognition and diagnosis of rice and other crop diseases.
基金Supported National Natural Science Foundation of China (No.62171321)Tianjin Municipal Natural Science Foundation (No.20JCZDJC00180,19 JCZDJC31500)the Open Projects Program of National Laboratory of Pattern Recognition (No.202000002)。
文摘Attention mechanism combined with convolutional neural network(CNN) achieves promising performance for magnetic resonance imaging(MRI) image segmentation,however these methods only learn attention weights from single scale,resulting in incomplete attention learning.A novel method named completed attention convolutional neural network(CACNN) is proposed for MRI image segmentation.Specifically,the channel-wise attention block(CWAB) and the pixel-wise attention block(PWAB) are designed to learn attention weights from the aspects of channel and pixel levels.As a result,completed attention weights are obtained,which is beneficial to discriminative feature learning.The method is verified on two widely used datasets(HVSMR and MRBrainS),and the experimental results demonstrate that the proposed method achieves better results than the state-of-theart methods.
文摘Major chronic diseases such as Cardiovascular Disease(CVD),diabetes,and cancer impose a significant burden on people and healthcare systems around the globe.Recently,Deep Learning(DL)has shown great potential for the development of intelligentmobile Health(mHealth)interventions for chronic diseases that could revolutionize the delivery of health care anytime,anywhere.The aimof this study is to present a systematic review of studies that have used DL based on mHealth data for the diagnosis,prognosis,management,and treatment of major chronic diseases and advance our understanding of the progress made in this rapidly developing field.Type 2 Diabetes Mellitus(T2DMs)is a regular chronic disorder that is caused by the secretion of insulin,which leads to serious death-related issues and the most complicated ones.Coronary Heart Disease(CHD)is the most frequent issue related to T2DM patients.The major concern is recognizing the high possibility of CHD complications,yet the model is not available to identify it.This work introduces a deep learning technique that can predict heart disease effectively using a hybrid model,which integrates DNNs(Deep Neural Networks)with a Multi-Head Attention Model called MADNN.The scheme canbedesignedtoautomatically learnthe best-quality features fromElectronic Health Records(EHRs),and effectively combine heterogeneous and time-sequencedmedical data for predicting the risk of CVD.The analysis is done using the Kaggle dataset.The outcomes prove that the MADNN has improved accuracy by about 95%and indicates the precise accuracy is higher for the disease compared with SVM,CNN and ANN.
基金supported in part by the Institute for Basic Science(to HP)No.IBS-R015-D1
文摘Attention deficit hyperactivity disorder(ADHD) is a pervasive psychiatric disorder that affects both children and adults. Adult male and female patients with ADHD are differentially affected, but few studies have explored the differences. The purpose of this study was to quantify differences between adult male and female patients with ADHD based on neuroimaging and connectivity analysis. Resting-state functional magnetic resonance imaging scans were obtained and preprocessed in 82 patients. Group-wise differences between male and female patients were quantified using degree centrality for different brain regions. The medial-, middle-, and inferior-frontal gyrus, superior parietal lobule, precuneus, supramarginal gyrus, superior- and middle-temporal gyrus, middle occipital gyrus, and cuneus were identified as regions with significant group-wise differences. The identified regions were correlated with clinical scores reflecting depression and anxiety and significant correlations were found. Adult ADHD patients exhibit different levels of depression and anxiety depending on sex, and our study provides insight into how changes in brain circuitry might differentially impact male and female ADHD patients.
基金supported in part by the National Natural Science Foundation of China under Grant 62272062the Researchers Supporting Project number.(RSP2023R102)King Saud University+5 种基金Riyadh,Saudi Arabia,the Open Research Fund of the Hunan Provincial Key Laboratory of Network Investigational Technology under Grant 2018WLZC003the National Science Foundation of Hunan Province under Grant 2020JJ2029the Hunan Provincial Key Research and Development Program under Grant 2022GK2019the Science Fund for Creative Research Groups of Hunan Province under Grant 2020JJ1006the Scientific Research Fund of Hunan Provincial Transportation Department under Grant 202143the Open Fund of Key Laboratory of Safety Control of Bridge Engineering,Ministry of Education(Changsha University of Science Technology)under Grant 21KB07.
文摘Sensors produce a large amount of multivariate time series data to record the states of Internet of Things(IoT)systems.Multivariate time series timestamp anomaly detection(TSAD)can identify timestamps of attacks and malfunctions.However,it is necessary to determine which sensor or indicator is abnormal to facilitate a more detailed diagnosis,a process referred to as fine-grained anomaly detection(FGAD).Although further FGAD can be extended based on TSAD methods,existing works do not provide a quantitative evaluation,and the performance is unknown.Therefore,to tackle the FGAD problem,this paper first verifies that the TSAD methods achieve low performance when applied to the FGAD task directly because of the excessive fusion of features and the ignoring of the relationship’s dynamic changes between indicators.Accordingly,this paper proposes a mul-tivariate time series fine-grained anomaly detection(MFGAD)framework.To avoid excessive fusion of features,MFGAD constructs two sub-models to independently identify the abnormal timestamp and abnormal indicator instead of a single model and then combines the two kinds of abnormal results to detect the fine-grained anomaly.Based on this framework,an algorithm based on Graph Attention Neural Network(GAT)and Attention Convolutional Long-Short Term Memory(A-ConvLSTM)is proposed,in which GAT learns temporal features of multiple indicators to detect abnormal timestamps and A-ConvLSTM captures the dynamic relationship between indicators to identify abnormal indicators.Extensive simulations on a real-world dataset demonstrate that the proposed algorithm can achieve a higher F1 score and hit rate than the extension of existing TSAD methods with the benefit of two independent sub-models for timestamp and indicator detection.
文摘Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.
基金This work was supported in part by the National Key Research and Development Program of China(2017YFD0200506)the National Natural Science Foundation of China(21837001 and 21907036).
文摘The impact of pesticides on insect pollinators has caused worldwide concern. Both global bee decline and stopping the use of pesticides may have serious consequences for food security. Automated and accurate prediction of chemical poisoning of honey bees is a challenging task owing to a lack of understanding of chemical toxicity and introspection. Deep learning(DL) shows potential utility for general and highly variable tasks across fields. Here, we developed a new DL model of deep graph attention convolutional neural networks(GACNN) with the combination of undirected graph(UG) and attention convolutional neural networks(ACNN) to accurately classify chemical poisoning of honey bees. We used a training dataset of 720 pesticides and an external validation dataset of 90 pesticides, which is one order of magnitude larger than the previous datasets. We tested its performance in two ways: poisonous versus nonpoisonous and GACNN versus other frequently-used machine learning models. The first case represents the accuracy in identifying bee poisonous chemicals. The second represents performance advantages. The GACNN achieved ~6% higher performance for predicting toxic samples and more stable with ~7%Matthews Correlation Coefficient(MCC) higher compared to all tested models, demonstrating GACNN is capable of accurately classifying chemicals and has considerable potential in practical applications.In addition, we also summarized and evaluated the mechanisms underlying the response of honey bees to chemical exposure based on the mapping of molecular similarity. Moreover, our cloud platform(http://beetox.cn) of this model provides low-cost universal access to information, which could vitally enhance environmental risk assessment.
基金supported by National Natural Science Foundation of China (Nos.61872363 and 61672507)Natural Foundation of Beijing Municipal Commission of Education,China (No.21JD0044)+1 种基金National Key Research and Development Program of China (No.2016YFB0401202)the Research and Development Fund of Institute of Automation,Chinese Academy of Sciences,China(No.Y9J2FZ0801)
文摘Due to the popularity of group activities in social media,group recommendation becomes increasingly significant.It aims to pursue a list of preferred items for a target group.Most deep learning-based methods on group recommendation have focused on learning group representations from single interaction between groups and users.However,these methods may suffer from data sparsity problem.Except for the interaction between groups and users,there also exist other interactions that may enrich group representation,such as the interaction between groups and items.Such interactions,which take place in the range of a group,form a local view of a certain group.In addition to local information,groups with common interests may also show similar tastes on items.Therefore,group representation can be conducted according to the similarity among groups,which forms a global view of a certain group.In this paper,we propose a novel global and local information fusion neural network(GLIF)model for group recommendation.In GLIF,an attentive neural network(ANN)activates rich interactions among groups,users and items with respect to forming a group′s local representation.Moreover,our model also leverages ANN to obtain a group′s global representation based on the similarity among different groups.Then,it fuses global and local representations based on attention mechanism to form a group′s comprehensive representation.Finally,group recommendation is conducted under neural collaborative filtering(NCF)framework.Extensive experiments on three public datasets demonstrate its superiority over the state-of-the-art methods for group recommendation.