Alzheimer’s disease(AD)is the most common neurodegenerative disorder and there is currently no cure.Neural circuit dysfunction is the fundamental mechanism underlying the learning and memory deficits in patients with...Alzheimer’s disease(AD)is the most common neurodegenerative disorder and there is currently no cure.Neural circuit dysfunction is the fundamental mechanism underlying the learning and memory deficits in patients with AD.Therefore,it is important to understand the structural features and mechanisms underlying the deregulated circuits during AD progression,by which new tools for intervention can be developed.Here,we briefly summarize the most recently established cutting-edge experimental approaches and key techniques that enable neural circuit tracing and manipulation of their activity.We also discuss the advantages and limitations of these approaches.Finally,we review the applications of these techniques in the discovery of circuit mechanisms underlyingβ-amyloid and tau pathologies during AD progression,and as well as the strategies for targeted AD treatments.展开更多
Anterograde viral tracers are powerful and essential tools for dissecting the output targets of a brain region of interest. They have been developed from herpes simplex virus 1(HSV-1) strain H129(H129), and have been ...Anterograde viral tracers are powerful and essential tools for dissecting the output targets of a brain region of interest. They have been developed from herpes simplex virus 1(HSV-1) strain H129(H129), and have been successfully applied to map diverse neural circuits.Initially, the anterograde polysynaptic tracer H129-G4 was used by many groups. We then developed the first monosynaptic tracer, H129-dTK-tdT, which was highly successful, yet improvements are needed. Now, by inserting another tdTomato expression cassette into the H129-dTK-tdT genome, we have created H129-dTK-T2, an updated version of H129-dTK-tdT that has improved labeling intensity. To help scientists produce and apply our H129-derived viral tracers, here we provide the protocol describing our detailed and standardized procedures. Commonly-encountered technical problems and their solutions are also discussed in detail. Broadly, the dissemination of this protocol will greatly support scientists to apply these viral tracers on a large scale.展开更多
Monitoring neuronal activity in vivo is critical to understanding the physiological or pathological functions of the brain.Two-photon Ca^(2+)imaging in vivo using a cranial window and specific neuronal labeling enable...Monitoring neuronal activity in vivo is critical to understanding the physiological or pathological functions of the brain.Two-photon Ca^(2+)imaging in vivo using a cranial window and specific neuronal labeling enables realtime,in situ,and long-term imaging of the living brain.Here,we constructed a recombinant rabies virus containing the Ca^(2+)indicator GCaMP6 s along with the fluorescent protein DsRed2 as a baseline reference to ensure GCaMP6 s signal reliability.This functional tracer was applied to retrogradely label specific V1-thalamus circuits and detect spontaneous Ca^(2+)activity in the dendrites of V1 corticothalamic neurons by in vivo two-photon Ca^(2+)imaging.Notably,we were able to record single-spine spontaneous Ca2+activity in specific circuits.Distinct spontaneous Ca^(2+)dynamics in dendrites of V1 corticothalamic neurons were found for different V1-thalamus circuits.Our method can be applied to monitor Ca^(2+)dynamics in specific input circuits in vivo,and contribute to functional studies of defined neural circuits and the dissection of functional circuit connections.展开更多
基金Grants from the Natural Science Foundation of China(31730035,82071219,91632305,and 91949205)the Ministry of Science and Technology of China(2016YFC1305800)the Guangdong Provincial Key S&T Program(2018B030336001).
文摘Alzheimer’s disease(AD)is the most common neurodegenerative disorder and there is currently no cure.Neural circuit dysfunction is the fundamental mechanism underlying the learning and memory deficits in patients with AD.Therefore,it is important to understand the structural features and mechanisms underlying the deregulated circuits during AD progression,by which new tools for intervention can be developed.Here,we briefly summarize the most recently established cutting-edge experimental approaches and key techniques that enable neural circuit tracing and manipulation of their activity.We also discuss the advantages and limitations of these approaches.Finally,we review the applications of these techniques in the discovery of circuit mechanisms underlyingβ-amyloid and tau pathologies during AD progression,and as well as the strategies for targeted AD treatments.
基金supported by the National Key Basic Research Program of China (2015CB755601)the National Natural Science Foundation of China (81427801, 81571355, and 81601206)the National Institutes of Health RF1 Funding of China (RF1MH120020-01)。
文摘Anterograde viral tracers are powerful and essential tools for dissecting the output targets of a brain region of interest. They have been developed from herpes simplex virus 1(HSV-1) strain H129(H129), and have been successfully applied to map diverse neural circuits.Initially, the anterograde polysynaptic tracer H129-G4 was used by many groups. We then developed the first monosynaptic tracer, H129-dTK-tdT, which was highly successful, yet improvements are needed. Now, by inserting another tdTomato expression cassette into the H129-dTK-tdT genome, we have created H129-dTK-T2, an updated version of H129-dTK-tdT that has improved labeling intensity. To help scientists produce and apply our H129-derived viral tracers, here we provide the protocol describing our detailed and standardized procedures. Commonly-encountered technical problems and their solutions are also discussed in detail. Broadly, the dissemination of this protocol will greatly support scientists to apply these viral tracers on a large scale.
基金supported by the National Natural Science Foundation of China(31700934 and 31371106)。
文摘Monitoring neuronal activity in vivo is critical to understanding the physiological or pathological functions of the brain.Two-photon Ca^(2+)imaging in vivo using a cranial window and specific neuronal labeling enables realtime,in situ,and long-term imaging of the living brain.Here,we constructed a recombinant rabies virus containing the Ca^(2+)indicator GCaMP6 s along with the fluorescent protein DsRed2 as a baseline reference to ensure GCaMP6 s signal reliability.This functional tracer was applied to retrogradely label specific V1-thalamus circuits and detect spontaneous Ca^(2+)activity in the dendrites of V1 corticothalamic neurons by in vivo two-photon Ca^(2+)imaging.Notably,we were able to record single-spine spontaneous Ca2+activity in specific circuits.Distinct spontaneous Ca^(2+)dynamics in dendrites of V1 corticothalamic neurons were found for different V1-thalamus circuits.Our method can be applied to monitor Ca^(2+)dynamics in specific input circuits in vivo,and contribute to functional studies of defined neural circuits and the dissection of functional circuit connections.