期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Neural-networks-based Modelling and a Fuzzy Neural Networks Controller of MCFC
1
作者 沈承 Cao +2 位作者 Guangyi Zhu Xinjian 《High Technology Letters》 EI CAS 2002年第2期76-82,共7页
Molten Carbonate Fuel Cells (MCFC) are produced with a highly efficient and clean power generation technology which will soon be widely utilized. The temperature characters of MCFC stack are briefly analyzed. A radial... Molten Carbonate Fuel Cells (MCFC) are produced with a highly efficient and clean power generation technology which will soon be widely utilized. The temperature characters of MCFC stack are briefly analyzed. A radial basis function (RBF) neural networks identification technology is applied to set up the temperature nonlinear model of MCFC stack, and the identification structure, algorithm and modeling training process are given in detail. A fuzzy controller of MCFC stack is designed. In order to improve its online control ability, a neural network trained by the I/O data of a fuzzy controller is designed. The neural networks can memorize and expand the inference rules of the fuzzy controller and substitute for the fuzzy controller to control MCFC stack online. A detailed design of the controller is given. The validity of MCFC stack modelling based on neural networks and the superior performance of the fuzzy neural networks controller are proved by Simulations. 展开更多
关键词 Molten Carbonate Fuel Cells (MCFC) Radial Basis Function (RBF) fuzzy neural networks control modelling
下载PDF
Maximum power point tracking of a photovoltaic energy system using neural fuzzy techniques 被引量:1
2
作者 李春华 朱新坚 +1 位作者 隋升 胡万起 《Journal of Shanghai University(English Edition)》 CAS 2009年第1期29-36,共8页
In order to improve the output efficiency of a photovoltaic (PV) energy system, the real-time maximum power point (MPP) of the PV array should be tracked closely. The non-linear and time-variant characteristics of... In order to improve the output efficiency of a photovoltaic (PV) energy system, the real-time maximum power point (MPP) of the PV array should be tracked closely. The non-linear and time-variant characteristics of the photovoltaic array and the non-linear and non-minimum phase characteristics of a boost converter make it difficult to track the MPP as in traditional control strategies. A neural fuzzy controller (NFC) in conjunction with the reasoning capability of fuzzy logical systems and the learning capability of neural networks is proposed to track the MPP in this paper. A gradient estimator based on a radial basis function neural network is developed to provide the reference information to the NFC. With a derived learning algorithm, the parameters of the NFC are updated adaptively. Experimental results show that, compared with the fuzzy logic control algorithm, the proposed control algorithm provides much better tracking performance. 展开更多
关键词 photovoltaic array boost converter maximum power point tracking (MPPT) neural fuzzy controller (NFC) radial basis function neural networks (RBFNN)
下载PDF
Adaptive Backstepping Output Feedback Control for SISO Nonlinear System Using Fuzzy Neural Networks 被引量:2
3
作者 Shao-Cheng Tong Yong-Ming Li 《International Journal of Automation and computing》 EI 2009年第2期145-153,共9页
In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the ... In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the unknown nonlinear functions, a fuzzy- neural adaptive observer is introduced for state estimation as well as system identification. Under the framework of the backstepping design, fuzzy-neural adaptive output feedback control is constructed recursively. It is proven that the proposed fuzzy adaptive control approach guarantees the global boundedness property for all the signals, driving the tracking error to a small neighbordhood of the origin. Simulation example is included to illustrate the effectiveness of the proposed approach. 展开更多
关键词 Nonlinear systems backstepping control adaptive fuzzy neural networks control state observer output feedback control.
下载PDF
A maximum power point tracker for photovoltaic energy systems based on fuzzy neural networks 被引量:5
4
作者 Chun-hua LI Xin-jian ZHU +3 位作者 Guang-yi CAO Wan-qi HU Sheng SUI Ming-ruo HU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第2期263-270,共8页
To extract the maximum power from a photovoltaic (PV) energy system, the real-time maximum power point (MPP) of the PV array must be tracked closely. The non-linear and time-variant characteristics of the PV array... To extract the maximum power from a photovoltaic (PV) energy system, the real-time maximum power point (MPP) of the PV array must be tracked closely. The non-linear and time-variant characteristics of the PV array and the non-linear and non-minimum phase characteristics of a boost converter make it difficult to track the MPP for traditional control strategies. We propose a fuzzy neural network controller (FNNC), which combines the reasoning capability of fuzzy logical systems and the learning capability of neural networks, to track the MPP. With a derived learning algorithm, the parameters of the FNNC are updated adaptively. A gradient estimator based on a radial basis function neural network is developed to provide the reference information to the FNNC. Simulation results show that the proposed control algorithm provides much better tracking performance compared with the filzzy logic control algorithm. 展开更多
关键词 Photovoltaic array Maximum power point tracking (MPPT) fuzzy neural network controller (FNNC) Radial basis function neural network (RBFNN)
原文传递
Adaptive-backstepping force/motion control for mobile-manipulator robot based on fuzzy CMAC neural networks 被引量:2
5
作者 Thang-Long MAI Yaonan WANG 《Control Theory and Technology》 EI CSCD 2014年第4期368-382,共15页
In this paper, an adaptive backstepping fuzzy cerebellar-model-articulation-control neural-networks control (ABFCNC) system for motion/force control of the mobile-manipulator robot (MMR) is proposed. By applying t... In this paper, an adaptive backstepping fuzzy cerebellar-model-articulation-control neural-networks control (ABFCNC) system for motion/force control of the mobile-manipulator robot (MMR) is proposed. By applying the ABFCNC in the tracking-position controller, the unknown dynamics and parameter variation problems of the MMR control system are relaxed. In addition, an adaptive robust compensator is proposed to eliminate uncertainties that consist of approximation errors, uncertain disturbances. Based on the tracking position-ABFCNC design, an adaptive robust control strategy is also developed for the nonholonomicconstraint force of the MMR. The design of adaptive-online learning algorithms is obtained by using the Lyapunov stability theorem. Therefore, the proposed method proves that it not only can guarantee the stability and robustness but also the tracking performances of the MMR control system. The effectiveness and robustness of the proposed control system are verified by comparative simulation results. 展开更多
关键词 Backstepping control fuzzy CMAC (cerebellar model articulation controller neural networks Adaptive robustcontrol Mobile-manipulator robot
原文传递
Adaptive inverse control of air supply flow for proton exchange membrane fuel cell systems 被引量:2
6
作者 李春华 朱新坚 +2 位作者 隋升 胡万起 胡鸣若 《Journal of Shanghai University(English Edition)》 CAS 2009年第6期474-480,共7页
To prevent the oxygen starvation and improve the system output performance, an adaptive inverse control (AIC) strategy is developed to regulate the air supply flow of a proton exchange membrane fuel cell (PEMFC) s... To prevent the oxygen starvation and improve the system output performance, an adaptive inverse control (AIC) strategy is developed to regulate the air supply flow of a proton exchange membrane fuel cell (PEMFC) system in this paper. The PEMFC stack and the air supply system including a compressor and a supply manifold are modeled for the purpose of performance analysis and controller design. A recurrent fuzzy neural network (RFNN) is utilized to identify the inverse model of the controlled system and generates a suitable control input during the abrupt step change of external disturbances. Compared with the PI controller, numerical simulations are performed to validate the effectiveness and advantages of the proposed AIC strategy. 展开更多
关键词 proton exchange membrane fuel cell (PEMFC) air supply system COMPRESSOR adaptive inverse control (AIC) recurrent fuzzy neural network (RFNN)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部