Harvesting the power coming from the wind provides a green andenvironmentally friendly approach to producing electricity. To facilitate theongoing advancement in wind energy applications, deep knowledge aboutwind regi...Harvesting the power coming from the wind provides a green andenvironmentally friendly approach to producing electricity. To facilitate theongoing advancement in wind energy applications, deep knowledge aboutwind regime behavior is essential. Wind speed is typically characterized bya statistical distribution, and the two-parameters Weibull distribution hasshown its ability to represent wind speeds worldwide. Estimation of Weibullparameters, namely scale (c) and shape (k) parameters, is vital to describethe observed wind speeds data accurately. Yet, it is still a challenging task.Several numerical estimation approaches have been used by researchers toobtain c and k. However, utilizing such methods to characterize wind speedsmay lead to unsatisfactory accuracy. Therefore, this study aims to investigatethe performance of the metaheuristic optimization algorithm, Neural NetworkAlgorithm (NNA), in obtaining Weibull parameters and comparing itsperformance with five numerical estimation approaches. In carrying out thestudy, the wind characteristics of three sites in Saudi Arabia, namely HaferAl Batin, Riyadh, and Sharurah, are analyzed. Results exhibit that NNA hashigh accuracy fitting results compared to the numerical estimation methods.The NNA demonstrates its efficiency in optimizing Weibull parameters at allthe considered sites with correlations exceeding 98.54.展开更多
The self-organization mapping (SOM) neural network algorithm is a new method used to identify the ecosystem service zones at regional extent. According to the ecosystem assessment framework of Millennium Ecosystem A...The self-organization mapping (SOM) neural network algorithm is a new method used to identify the ecosystem service zones at regional extent. According to the ecosystem assessment framework of Millennium Ecosystem Assessment ( MA), this paper develops an indicator system and conducts a spatial cluster analysis at the 1km by I km grid pixel scale with the SOM neural network algorithm to sort the core ecosystem services over the vertical and horizontal dimensions. A case study was carried out in Xilingol League. The ecosystem services in Xilingol League could be divided to six different ecological zones. The SOM neural network algorithm was capable of identifying the similarities among the input data automatically. The research provides both spatially and temporally valuable information targeted sustainable ecosystem management for decision-makers.展开更多
Accurate estimation of biomass is necessary for evaluating crop growth and predicting crop yield.Biomass is also a key trait in increasing grain yield by crop breeding.The aims of this study were(i)to identify the bes...Accurate estimation of biomass is necessary for evaluating crop growth and predicting crop yield.Biomass is also a key trait in increasing grain yield by crop breeding.The aims of this study were(i)to identify the best vegetation indices for estimating maize biomass,(ii)to investigate the relationship between biomass and leaf area index(LAI)at several growth stages,and(iii)to evaluate a biomass model using measured vegetation indices or simulated vegetation indices of Sentinel 2A and LAI using a deep neural network(DNN)algorithm.The results showed that biomass was associated with all vegetation indices.The three-band water index(TBWI)was the best vegetation index for estimating biomass and the corresponding R2,RMSE,and RRMSE were 0.76,2.84 t ha−1,and 38.22%respectively.LAI was highly correlated with biomass(R2=0.89,RMSE=2.27 t ha−1,and RRMSE=30.55%).Estimated biomass based on 15 hyperspectral vegetation indices was in a high agreement with measured biomass using the DNN algorithm(R2=0.83,RMSE=1.96 t ha−1,and RRMSE=26.43%).Biomass estimation accuracy was further increased when LAI was combined with the 15 vegetation indices(R2=0.91,RMSE=1.49 t ha−1,and RRMSE=20.05%).Relationships between the hyperspectral vegetation indices and biomass differed from relationships between simulated Sentinel 2A vegetation indices and biomass.Biomass estimation from the hyperspectral vegetation indices was more accurate than that from the simulated Sentinel 2A vegetation indices(R2=0.87,RMSE=1.84 t ha−1,and RRMSE=24.76%).The DNN algorithm was effective in improving the estimation accuracy of biomass.It provides a guideline for estimating biomass of maize using remote sensing technology and the DNN algorithm in this region.展开更多
This paper considers adaptive control of parallel manipulators combined with fuzzy-neural network algorithms (FNNA). With this algorithm, the robustness is guaranteed by the adaptive control law and the parametric u...This paper considers adaptive control of parallel manipulators combined with fuzzy-neural network algorithms (FNNA). With this algorithm, the robustness is guaranteed by the adaptive control law and the parametric uncertainties are eliminated. FNNA is used to handle model uncertainties and external disturbances. In the proposed control scheme, we consider modifying the weight of fuzzy rules and present these rules to a MIMO system of parallel manipulators with more than three degrees-of-freedom (DoF). The algorithm has the advantage of not requiring the inverse of the Jacobian matrix especially for the low DoF parallel manipulators. The validity of the control scheme is shown through numerical simulations of a 6-RPS parallel manipulator with three DoF.展开更多
The traditional genetic algorithm(GA)has unstable inversion results and is easy to fall into the local optimum when inverting fault parameters.Therefore,this article considers the combination of GA with other non-line...The traditional genetic algorithm(GA)has unstable inversion results and is easy to fall into the local optimum when inverting fault parameters.Therefore,this article considers the combination of GA with other non-linear algorithms in order to improve the inversion precision of GA.This paper proposes a genetic Nelder-Mead neural network algorithm(GNMNNA).This algorithm uses a neural network algorithm(NNA)to optimize the global search ability of GA.At the same time,the simplex algorithm is used to optimize the local search capability of the GA.Through numerical examples,the stability of the inversion algorithm under different strategies is explored.The experimental results show that the proposed GNMNNA has stronger inversion stability and higher precision compared with the existing algorithms.The effectiveness of GNMNNA is verified by the BodrumeKos earthquake and Monte Cristo Range earthquake.The experimental results show that GNMNNA is superior to GA and NNA in both inversion precision and computational stability.Therefore,GNMNNA has greater application potential in complex earthquake environment.展开更多
[Objectives]To explore the agricultural water resources utilization and management under the agricultural safety aim.[Methods]Fuzzy neural network algorithm was adopted.The evaluation model of agricultural water resou...[Objectives]To explore the agricultural water resources utilization and management under the agricultural safety aim.[Methods]Fuzzy neural network algorithm was adopted.The evaluation model of agricultural water resources utilization and management carrying capacity based on quantitative system was established.[Results]With the remarkable improvement of China's national income,great progress has been made in China's agricultural development.However,in the process of agricultural safety production,the problem of sustainable development has not been noticed,the problem of water resources exceeding the limit bearing capacity frequently occurs.[Conclusions]It is of great significance to effectively solve the problem of water resources utilization and management.In the feasibility test for the algorithm,further tests on various indicators show that the research is feasible.展开更多
Topography can strongly affect ground motion,and studies of the quantification of hill surfaces’topographic effect are relatively rare.In this paper,a new quantitative seismic topographic effect prediction method bas...Topography can strongly affect ground motion,and studies of the quantification of hill surfaces’topographic effect are relatively rare.In this paper,a new quantitative seismic topographic effect prediction method based upon the BP neural network algorithm and three-dimensional finite element method(FEM)was developed.The FEM simulation results were compared with seismic records and the results show that the PGA and response spectra have a tendency to increase with increasing elevation,but the correlation between PGA amplification factors and slope is not obvious for low hills.New BP neural network models were established for the prediction of amplification factors of PGA and response spectra.Two kinds of input variables’combinations which are convenient to achieve are proposed in this paper for the prediction of amplification factors of PGA and response spectra,respectively.The absolute values of prediction errors can be mostly within 0.1 for PGA amplification factors,and they can be mostly within 0.2 for response spectra’s amplification factors.One input variables’combination can achieve better prediction performance while the other one has better expandability of the predictive region.Particularly,the BP models only employ one hidden layer with about a hundred nodes,which makes it efficient for training.展开更多
Extracting the unknown parameters of proton exchange membrane fuel cell(PEMFC)models accurately is vital to design,control,and simulate the actual PEMFC.In order to extract the unknown parameters of PEMFC models preci...Extracting the unknown parameters of proton exchange membrane fuel cell(PEMFC)models accurately is vital to design,control,and simulate the actual PEMFC.In order to extract the unknown parameters of PEMFC models precisely,this work presents an improved version of neural network algorithm(NNA),namely the multiple learning neural network algorithm(MLNNA).In MLNNA,six learning strategies are designed based on the created local elite archive and global elite archive to balance exploration and exploitation of MLNNA.To evaluate the performance of MLNNA,MLNNA is first employed to solve the well-known CEC 2015 test suite.Experimental results demonstrate that MLNNA outperforms NNA on most test functions.Then,MLNNA is used to extract the parameters of two PEMFC models including the BCS 500 W PEMFC model and the NedStack SP6 PEMFC model.Experimental results support the superiority of MLNNA in the parameter estimation of PEMFC models by comparing it with 10 powerful optimization algorithms.展开更多
The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The ...The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations.展开更多
Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a...Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a genetic algorithm (GA) is developed for predicting VGO saturates. The number of neurons in the hidden layer, the momentum and the learning rates are determined by using the genetic algorithm. The inputs for the artificial neural networks model are five physical properties, namely, average boiling point, density, molecular weight, viscosity and refractive index. It is verified that the genetic algorithm could find the optimal structural parameters and training parameters of ANN. In addition, an artificial neural networks model based on a genetic algorithm was tested and the results indicated that the VGO saturates can be efficiently predicted. Compared with conventional artificial neural networks models, this approach can improve the prediction accuracy.展开更多
Neural-Network Response Surfaces (NNRS) is applied to replace the actual expensive finite element analysis during the composite structural optimization process. The Orthotropic Experiment Method (OEM) is used to s...Neural-Network Response Surfaces (NNRS) is applied to replace the actual expensive finite element analysis during the composite structural optimization process. The Orthotropic Experiment Method (OEM) is used to select the most appropriate design samples for network training. The trained response surfaces can either be objective function or constraint conditions. Together with other conven- tional constraints, an optimization model is then set up and can be solved by Genetic Algorithm (GA). This allows the separation between design analysis modeling and optimization searching. Through an example of a hat-stiffened composite plate design, the weight response surface is constructed to be objective function, and strength and buckling response surfaces as constraints; and all of them are trained through NASTRAN finite element analysis. The results of optimization study illustrate that the cycles of structural analysis ean be remarkably reduced or even eliminated during the optimization, thus greatly raising the efficiency of optimization process. It also observed that NNRS approximation can achieve equal or even better accuracy than conventional functional response surfaces.展开更多
While various kinds of fibers are used to improve the hot mix asphalt(HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using po...While various kinds of fibers are used to improve the hot mix asphalt(HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using polypropylene and polyester fibers was evaluated and two models namely regression and artificial neural network(ANN) were used to predict the fatigue life based on the fibers parameters. As ANN contains many parameters such as the number of hidden layers which directly influence the prediction accuracy, genetic algorithm(GA) was used to solve optimization problem for ANN. Moreover, the trial and error method was used to optimize the GA parameters such as the population size. The comparison of the results obtained from regression and optimized ANN with GA shows that the two-hidden-layer ANN with two and five neurons in the first and second hidden layers, respectively, can predict the fatigue life of fiber-reinforced HMA with high accuracy(correlation coefficient of 0.96).展开更多
A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without req...A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without requiring robot kinematics and camera calibration. To speed up the convergence and avoid local minimum of the neural network, this paper uses a genetic algorithm to find the optimal initial weights and thresholds and then uses the BP Mgorithm to train the neural network according to the data given. The proposed method can effectively combine the good global searching ability of genetic algorithms with the accurate local searching feature of BP neural network. The Simulink model for PUMA560 robot visual servo system based on the improved BP neural network is built with the Robotics Toolbox of Matlab. The simulation results indicate that the proposed method can accelerate convergence of the image errors and provide a simple and effective way of robot control.展开更多
In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic alg...In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic algorithm is adopted to construct the blade shape. The blade is stacked by the center of gravity in radial direction with five sections. For each blade section, independent suction and pressure sides are constructed from the camber line using Bezier curves. Three-dimensional flow analysis is carried out to verify the performance of the new blade. It is found that the new blade has improved the blade performance by 0.5%. Consequently, it is verified that the new blade is effective to improve the turbine internal efficiency and to lower the turbine weight and manufacturing cost by reducing the blade number by about 15%.展开更多
A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization o...A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization of the process parameters is conducted using the genetic algorithm (GA). The experimental results have shown that a surface model of the neural network can describe the nonlinear implicit relationship between the parameters of the power spinning process:the wall margin and amount of expansion. It has been found that the process of determining spinning technological parameters can be accelerated using the optimization method developed based on the BP neural network and the genetic algorithm used for the process parameters of power spinning formation. It is undoubtedly beneficial towards engineering applications.展开更多
A new method based on the combination of a neural network and a genetic algorithm was proposed to rank the order of exploitation priority of coalbed methane reservoirs. The neural network was used to acquire the weigh...A new method based on the combination of a neural network and a genetic algorithm was proposed to rank the order of exploitation priority of coalbed methane reservoirs. The neural network was used to acquire the weights of reservoir parameters through sample training and genetic algorithm was used to optimize the initial connection weights of nerve cells in case the neural network fell into a local minimum. Additionally, subordinate functions of each parameter were established to normalize the actual values of parameters of coalbed methane reservoirs in the range between zero and unity. Eventually, evaluation values of all coalbed methane reservoirs could be obtained by using the comprehensive evaluation method, which is the basis to rank the coalbed methane reservoirs in the order of exploitation priority. The greater the evaluation value, the higher the exploitation priority. The ranking method was verified in this paper by ten exploited coalbed methane reservoirs in China. The evaluation results are in agreement with the actual exploitation cases. The method can ensure the truthfulness and credibility of the weights of parameters and avoid the subjectivity caused by experts. Furthermore, the probability of falling into local minima is reduced, because genetic the algorithm is used to optimize the neural network system.展开更多
The modeling and optimization of an industrial-scale crude distillation unit (CDU) are addressed. The main spec- ifications and base conditions of CDU are taken from a crude oil refinery in Wuhan, China. For modelin...The modeling and optimization of an industrial-scale crude distillation unit (CDU) are addressed. The main spec- ifications and base conditions of CDU are taken from a crude oil refinery in Wuhan, China. For modeling of a com- plicated CDU, an improved wavelet neural network (WNN) is presented to model the complicated CDU, in which novel parametric updating laws are developed to precisely capture the characteristics of CDU. To address CDU in an economically optimal manner, an economic optimization algorithm under prescribed constraints is presented. By using a combination of WNN-based optimization model and line-up competition algorithm (LCA), the supe- rior performance of the proposed approach is verified. Compared with the base operating condition, it is validat- ed that the increments of products including kerosene and diesel are up to 20% at least by increasing less than 5% duties of intermediate coolers such as second pump-around (PA2) and third Dump-around (PA3).展开更多
In energy dispersive X-ray fiuorescence(EDXRF), quantitative elemental content analysis becomes difficult due to the existence of the noise, the spectrum peak superposition, element matrix effect, etc. In this paper, ...In energy dispersive X-ray fiuorescence(EDXRF), quantitative elemental content analysis becomes difficult due to the existence of the noise, the spectrum peak superposition, element matrix effect, etc. In this paper, a hybrid approach of genetic algorithm(GA) and back propagation(BP) neural network is proposed without considering the complex relationship between the elemental content and peak intensity. The aim of GA-optimized BP is to get better network initial weights and thresholds. The starting point of this approach is that the reciprocal of the mean square error of the initialization BP neural network is set as the fitness value of the individuals in GA; and the initial weights and thresholds are replaced by individuals, then the optimal individual is searched by selecting, crossover and mutation operations, finally a new BP neural network model is established with the optimal initial weights and thresholds. The quantitative analysis results of titanium and iron contents in five types of mineral samples show that the relative errors of 76.7% samples are below 2%, compared to chemical analysis data, which demonstrates the effectiveness of the proposed method.展开更多
In this paper a novel class of neural networks called generalized congruence neural networks (GCNN) is proposed. All neurons in the neural networks are activated in the form of congruence. The architectures, learnin...In this paper a novel class of neural networks called generalized congruence neural networks (GCNN) is proposed. All neurons in the neural networks are activated in the form of congruence. The architectures, learning rules and two algorithms are presented. Simulation results indicate that such network has satisfactory generalization properties near the sample points. Since this kind of neural nets can be easily operated and implemented, it is appropriate to make further research concerning the theory and applications of GCNN.展开更多
基金the Deputyship for Research&Innovation,Ministry of Education,Saudi Arabia for funding this research work through the project number (QUIF-4-3-3-31466).
文摘Harvesting the power coming from the wind provides a green andenvironmentally friendly approach to producing electricity. To facilitate theongoing advancement in wind energy applications, deep knowledge aboutwind regime behavior is essential. Wind speed is typically characterized bya statistical distribution, and the two-parameters Weibull distribution hasshown its ability to represent wind speeds worldwide. Estimation of Weibullparameters, namely scale (c) and shape (k) parameters, is vital to describethe observed wind speeds data accurately. Yet, it is still a challenging task.Several numerical estimation approaches have been used by researchers toobtain c and k. However, utilizing such methods to characterize wind speedsmay lead to unsatisfactory accuracy. Therefore, this study aims to investigatethe performance of the metaheuristic optimization algorithm, Neural NetworkAlgorithm (NNA), in obtaining Weibull parameters and comparing itsperformance with five numerical estimation approaches. In carrying out thestudy, the wind characteristics of three sites in Saudi Arabia, namely HaferAl Batin, Riyadh, and Sharurah, are analyzed. Results exhibit that NNA hashigh accuracy fitting results compared to the numerical estimation methods.The NNA demonstrates its efficiency in optimizing Weibull parameters at allthe considered sites with correlations exceeding 98.54.
基金Supported by the National Scientific Foundation of China(4080123170873118)+6 种基金the Chinese Academy of Sciences(KZCX2-YW-305-2KSCX2-YW-N-039KZCX2-YW-326-1)the Ministry of Science and Technology of China(2006DFB91912012006BAC08B032006BAC08B062008BAK47B02)~~
文摘The self-organization mapping (SOM) neural network algorithm is a new method used to identify the ecosystem service zones at regional extent. According to the ecosystem assessment framework of Millennium Ecosystem Assessment ( MA), this paper develops an indicator system and conducts a spatial cluster analysis at the 1km by I km grid pixel scale with the SOM neural network algorithm to sort the core ecosystem services over the vertical and horizontal dimensions. A case study was carried out in Xilingol League. The ecosystem services in Xilingol League could be divided to six different ecological zones. The SOM neural network algorithm was capable of identifying the similarities among the input data automatically. The research provides both spatially and temporally valuable information targeted sustainable ecosystem management for decision-makers.
基金supported by the National Natural Science Foundation of China(41601369)the Young Talents Program of Institute of Crop Sciences,Chinese Academy of Agricultural Sciences(S2019YC04)
文摘Accurate estimation of biomass is necessary for evaluating crop growth and predicting crop yield.Biomass is also a key trait in increasing grain yield by crop breeding.The aims of this study were(i)to identify the best vegetation indices for estimating maize biomass,(ii)to investigate the relationship between biomass and leaf area index(LAI)at several growth stages,and(iii)to evaluate a biomass model using measured vegetation indices or simulated vegetation indices of Sentinel 2A and LAI using a deep neural network(DNN)algorithm.The results showed that biomass was associated with all vegetation indices.The three-band water index(TBWI)was the best vegetation index for estimating biomass and the corresponding R2,RMSE,and RRMSE were 0.76,2.84 t ha−1,and 38.22%respectively.LAI was highly correlated with biomass(R2=0.89,RMSE=2.27 t ha−1,and RRMSE=30.55%).Estimated biomass based on 15 hyperspectral vegetation indices was in a high agreement with measured biomass using the DNN algorithm(R2=0.83,RMSE=1.96 t ha−1,and RRMSE=26.43%).Biomass estimation accuracy was further increased when LAI was combined with the 15 vegetation indices(R2=0.91,RMSE=1.49 t ha−1,and RRMSE=20.05%).Relationships between the hyperspectral vegetation indices and biomass differed from relationships between simulated Sentinel 2A vegetation indices and biomass.Biomass estimation from the hyperspectral vegetation indices was more accurate than that from the simulated Sentinel 2A vegetation indices(R2=0.87,RMSE=1.84 t ha−1,and RRMSE=24.76%).The DNN algorithm was effective in improving the estimation accuracy of biomass.It provides a guideline for estimating biomass of maize using remote sensing technology and the DNN algorithm in this region.
基金This work was supported by the National Natural Science Foundation of China (No. 50375001)
文摘This paper considers adaptive control of parallel manipulators combined with fuzzy-neural network algorithms (FNNA). With this algorithm, the robustness is guaranteed by the adaptive control law and the parametric uncertainties are eliminated. FNNA is used to handle model uncertainties and external disturbances. In the proposed control scheme, we consider modifying the weight of fuzzy rules and present these rules to a MIMO system of parallel manipulators with more than three degrees-of-freedom (DoF). The algorithm has the advantage of not requiring the inverse of the Jacobian matrix especially for the low DoF parallel manipulators. The validity of the control scheme is shown through numerical simulations of a 6-RPS parallel manipulator with three DoF.
基金This manuscript is supported by the National Natural Science Foundation of China(No.42174011,41874001 and 42174011).
文摘The traditional genetic algorithm(GA)has unstable inversion results and is easy to fall into the local optimum when inverting fault parameters.Therefore,this article considers the combination of GA with other non-linear algorithms in order to improve the inversion precision of GA.This paper proposes a genetic Nelder-Mead neural network algorithm(GNMNNA).This algorithm uses a neural network algorithm(NNA)to optimize the global search ability of GA.At the same time,the simplex algorithm is used to optimize the local search capability of the GA.Through numerical examples,the stability of the inversion algorithm under different strategies is explored.The experimental results show that the proposed GNMNNA has stronger inversion stability and higher precision compared with the existing algorithms.The effectiveness of GNMNNA is verified by the BodrumeKos earthquake and Monte Cristo Range earthquake.The experimental results show that GNMNNA is superior to GA and NNA in both inversion precision and computational stability.Therefore,GNMNNA has greater application potential in complex earthquake environment.
基金Supported by Special Scientific Research Program of Shaanxi Provincial Department of Education"Study on the Development of Farmer Water Use Cooperative Organizations from the Dual Perspectives of Social Capital and Organizational Structure"(13YJC790135)Project of Social Science Foundation of Shaanxi Province"Study on Development of Farmer Water Use Cooperative Organization in Guanzhong Irrigation Area Based on the Withdrawal Behavior of Members"(2016D026)Special Scientific Research Fund Project of Xianyang Normal University"Study on Member Heterogeneity and the Governance of Farmers Fund Mutual Aid Organizations"(14XYK056).
文摘[Objectives]To explore the agricultural water resources utilization and management under the agricultural safety aim.[Methods]Fuzzy neural network algorithm was adopted.The evaluation model of agricultural water resources utilization and management carrying capacity based on quantitative system was established.[Results]With the remarkable improvement of China's national income,great progress has been made in China's agricultural development.However,in the process of agricultural safety production,the problem of sustainable development has not been noticed,the problem of water resources exceeding the limit bearing capacity frequently occurs.[Conclusions]It is of great significance to effectively solve the problem of water resources utilization and management.In the feasibility test for the algorithm,further tests on various indicators show that the research is feasible.
基金supported by the National Natural Science Foundation of China(No.51878625)the Collaboratory for the Study of Earthquake Predictability in China Seismic Experimental Site(No.2018YFE0109700)the General Scientific Research Foundation of Shandong Earthquake Agency(No.YB2208).
文摘Topography can strongly affect ground motion,and studies of the quantification of hill surfaces’topographic effect are relatively rare.In this paper,a new quantitative seismic topographic effect prediction method based upon the BP neural network algorithm and three-dimensional finite element method(FEM)was developed.The FEM simulation results were compared with seismic records and the results show that the PGA and response spectra have a tendency to increase with increasing elevation,but the correlation between PGA amplification factors and slope is not obvious for low hills.New BP neural network models were established for the prediction of amplification factors of PGA and response spectra.Two kinds of input variables’combinations which are convenient to achieve are proposed in this paper for the prediction of amplification factors of PGA and response spectra,respectively.The absolute values of prediction errors can be mostly within 0.1 for PGA amplification factors,and they can be mostly within 0.2 for response spectra’s amplification factors.One input variables’combination can achieve better prediction performance while the other one has better expandability of the predictive region.Particularly,the BP models only employ one hidden layer with about a hundred nodes,which makes it efficient for training.
基金This research was supported by the Postdoc Matching Fund Scheme(P0040875),the Hong Kong Polytechnic University.
文摘Extracting the unknown parameters of proton exchange membrane fuel cell(PEMFC)models accurately is vital to design,control,and simulate the actual PEMFC.In order to extract the unknown parameters of PEMFC models precisely,this work presents an improved version of neural network algorithm(NNA),namely the multiple learning neural network algorithm(MLNNA).In MLNNA,six learning strategies are designed based on the created local elite archive and global elite archive to balance exploration and exploitation of MLNNA.To evaluate the performance of MLNNA,MLNNA is first employed to solve the well-known CEC 2015 test suite.Experimental results demonstrate that MLNNA outperforms NNA on most test functions.Then,MLNNA is used to extract the parameters of two PEMFC models including the BCS 500 W PEMFC model and the NedStack SP6 PEMFC model.Experimental results support the superiority of MLNNA in the parameter estimation of PEMFC models by comparing it with 10 powerful optimization algorithms.
文摘The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations.
文摘Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a genetic algorithm (GA) is developed for predicting VGO saturates. The number of neurons in the hidden layer, the momentum and the learning rates are determined by using the genetic algorithm. The inputs for the artificial neural networks model are five physical properties, namely, average boiling point, density, molecular weight, viscosity and refractive index. It is verified that the genetic algorithm could find the optimal structural parameters and training parameters of ANN. In addition, an artificial neural networks model based on a genetic algorithm was tested and the results indicated that the VGO saturates can be efficiently predicted. Compared with conventional artificial neural networks models, this approach can improve the prediction accuracy.
文摘Neural-Network Response Surfaces (NNRS) is applied to replace the actual expensive finite element analysis during the composite structural optimization process. The Orthotropic Experiment Method (OEM) is used to select the most appropriate design samples for network training. The trained response surfaces can either be objective function or constraint conditions. Together with other conven- tional constraints, an optimization model is then set up and can be solved by Genetic Algorithm (GA). This allows the separation between design analysis modeling and optimization searching. Through an example of a hat-stiffened composite plate design, the weight response surface is constructed to be objective function, and strength and buckling response surfaces as constraints; and all of them are trained through NASTRAN finite element analysis. The results of optimization study illustrate that the cycles of structural analysis ean be remarkably reduced or even eliminated during the optimization, thus greatly raising the efficiency of optimization process. It also observed that NNRS approximation can achieve equal or even better accuracy than conventional functional response surfaces.
文摘While various kinds of fibers are used to improve the hot mix asphalt(HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using polypropylene and polyester fibers was evaluated and two models namely regression and artificial neural network(ANN) were used to predict the fatigue life based on the fibers parameters. As ANN contains many parameters such as the number of hidden layers which directly influence the prediction accuracy, genetic algorithm(GA) was used to solve optimization problem for ANN. Moreover, the trial and error method was used to optimize the GA parameters such as the population size. The comparison of the results obtained from regression and optimized ANN with GA shows that the two-hidden-layer ANN with two and five neurons in the first and second hidden layers, respectively, can predict the fatigue life of fiber-reinforced HMA with high accuracy(correlation coefficient of 0.96).
文摘A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without requiring robot kinematics and camera calibration. To speed up the convergence and avoid local minimum of the neural network, this paper uses a genetic algorithm to find the optimal initial weights and thresholds and then uses the BP Mgorithm to train the neural network according to the data given. The proposed method can effectively combine the good global searching ability of genetic algorithms with the accurate local searching feature of BP neural network. The Simulink model for PUMA560 robot visual servo system based on the improved BP neural network is built with the Robotics Toolbox of Matlab. The simulation results indicate that the proposed method can accelerate convergence of the image errors and provide a simple and effective way of robot control.
文摘In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic algorithm is adopted to construct the blade shape. The blade is stacked by the center of gravity in radial direction with five sections. For each blade section, independent suction and pressure sides are constructed from the camber line using Bezier curves. Three-dimensional flow analysis is carried out to verify the performance of the new blade. It is found that the new blade has improved the blade performance by 0.5%. Consequently, it is verified that the new blade is effective to improve the turbine internal efficiency and to lower the turbine weight and manufacturing cost by reducing the blade number by about 15%.
基金Supported by the Natural Science Foundation of Shanxi Province Project(2012011023-2)
文摘A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization of the process parameters is conducted using the genetic algorithm (GA). The experimental results have shown that a surface model of the neural network can describe the nonlinear implicit relationship between the parameters of the power spinning process:the wall margin and amount of expansion. It has been found that the process of determining spinning technological parameters can be accelerated using the optimization method developed based on the BP neural network and the genetic algorithm used for the process parameters of power spinning formation. It is undoubtedly beneficial towards engineering applications.
基金EU-China Energy and Environment Programme(Europe Aid/120723/D/SV/CN)Research Fund for the Doctoral Program of Higher Education of China(20030425001)
文摘A new method based on the combination of a neural network and a genetic algorithm was proposed to rank the order of exploitation priority of coalbed methane reservoirs. The neural network was used to acquire the weights of reservoir parameters through sample training and genetic algorithm was used to optimize the initial connection weights of nerve cells in case the neural network fell into a local minimum. Additionally, subordinate functions of each parameter were established to normalize the actual values of parameters of coalbed methane reservoirs in the range between zero and unity. Eventually, evaluation values of all coalbed methane reservoirs could be obtained by using the comprehensive evaluation method, which is the basis to rank the coalbed methane reservoirs in the order of exploitation priority. The greater the evaluation value, the higher the exploitation priority. The ranking method was verified in this paper by ten exploited coalbed methane reservoirs in China. The evaluation results are in agreement with the actual exploitation cases. The method can ensure the truthfulness and credibility of the weights of parameters and avoid the subjectivity caused by experts. Furthermore, the probability of falling into local minima is reduced, because genetic the algorithm is used to optimize the neural network system.
基金Supported by the National Natural Science Foundation of China(No.21376185)
文摘The modeling and optimization of an industrial-scale crude distillation unit (CDU) are addressed. The main spec- ifications and base conditions of CDU are taken from a crude oil refinery in Wuhan, China. For modeling of a com- plicated CDU, an improved wavelet neural network (WNN) is presented to model the complicated CDU, in which novel parametric updating laws are developed to precisely capture the characteristics of CDU. To address CDU in an economically optimal manner, an economic optimization algorithm under prescribed constraints is presented. By using a combination of WNN-based optimization model and line-up competition algorithm (LCA), the supe- rior performance of the proposed approach is verified. Compared with the base operating condition, it is validat- ed that the increments of products including kerosene and diesel are up to 20% at least by increasing less than 5% duties of intermediate coolers such as second pump-around (PA2) and third Dump-around (PA3).
基金Supported by National Outstanding Youth Science Foundation of China(No.41025015)the National Natural Science Foundation of China(No.41274109)Sichuan Youth Science and Technology Innovation Research Team(No.2011JTD0013)
文摘In energy dispersive X-ray fiuorescence(EDXRF), quantitative elemental content analysis becomes difficult due to the existence of the noise, the spectrum peak superposition, element matrix effect, etc. In this paper, a hybrid approach of genetic algorithm(GA) and back propagation(BP) neural network is proposed without considering the complex relationship between the elemental content and peak intensity. The aim of GA-optimized BP is to get better network initial weights and thresholds. The starting point of this approach is that the reciprocal of the mean square error of the initialization BP neural network is set as the fitness value of the individuals in GA; and the initial weights and thresholds are replaced by individuals, then the optimal individual is searched by selecting, crossover and mutation operations, finally a new BP neural network model is established with the optimal initial weights and thresholds. The quantitative analysis results of titanium and iron contents in five types of mineral samples show that the relative errors of 76.7% samples are below 2%, compared to chemical analysis data, which demonstrates the effectiveness of the proposed method.
文摘In this paper a novel class of neural networks called generalized congruence neural networks (GCNN) is proposed. All neurons in the neural networks are activated in the form of congruence. The architectures, learning rules and two algorithms are presented. Simulation results indicate that such network has satisfactory generalization properties near the sample points. Since this kind of neural nets can be easily operated and implemented, it is appropriate to make further research concerning the theory and applications of GCNN.