期刊文献+
共找到193篇文章
< 1 2 10 >
每页显示 20 50 100
Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting
1
作者 Ying Su Morgan C.Wang Shuai Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3529-3549,共21页
Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learning(AutoML).At present,forecasting,whether rooted in machine learning or statistical learning,typically ... Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learning(AutoML).At present,forecasting,whether rooted in machine learning or statistical learning,typically relies on expert input and necessitates substantial manual involvement.This manual effort spans model development,feature engineering,hyper-parameter tuning,and the intricate construction of time series models.The complexity of these tasks renders complete automation unfeasible,as they inherently demand human intervention at multiple junctures.To surmount these challenges,this article proposes leveraging Long Short-Term Memory,which is the variant of Recurrent Neural Networks,harnessing memory cells and gating mechanisms to facilitate long-term time series prediction.However,forecasting accuracy by particular neural network and traditional models can degrade significantly,when addressing long-term time-series tasks.Therefore,our research demonstrates that this innovative approach outperforms the traditional Autoregressive Integrated Moving Average(ARIMA)method in forecasting long-term univariate time series.ARIMA is a high-quality and competitive model in time series prediction,and yet it requires significant preprocessing efforts.Using multiple accuracy metrics,we have evaluated both ARIMA and proposed method on the simulated time-series data and real data in both short and long term.Furthermore,our findings indicate its superiority over alternative network architectures,including Fully Connected Neural Networks,Convolutional Neural Networks,and Nonpooling Convolutional Neural Networks.Our AutoML approach enables non-professional to attain highly accurate and effective time series forecasting,and can be widely applied to various domains,particularly in business and finance. 展开更多
关键词 Automated machine learning autoregressive integrated moving average neural networks time series analysis
下载PDF
River channel flood forecasting method of coupling wavelet neural network with autoregressive model 被引量:1
2
作者 李致家 周轶 马振坤 《Journal of Southeast University(English Edition)》 EI CAS 2008年第1期90-94,共5页
Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN.... Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness. 展开更多
关键词 river channel flood forecasting wavel'et neural network autoregressive model recursive least square( RLS) adaptive fading factor
下载PDF
Prediction of the Bombay Stock Exchange (BSE) Market Returns Using Artificial Neural Network and Genetic Algorithm
3
作者 Yusuf Perwej Asif Perwej 《Journal of Intelligent Learning Systems and Applications》 2012年第2期108-119,共12页
Stock Market is the market for security where organized issuance and trading of Stocks take place either through exchange or over the counter in electronic or physical form. It plays an important role in canalizing ca... Stock Market is the market for security where organized issuance and trading of Stocks take place either through exchange or over the counter in electronic or physical form. It plays an important role in canalizing capital from the investors to the business houses, which consequently leads to the availability of funds for business expansion. In this paper, we investigate to predict the daily excess returns of Bombay Stock Exchange (BSE) indices over the respective Treasury bill rate returns. Initially, we prove that the excess return time series do not fluctuate randomly. We are applying the prediction models of Autoregressive feed forward Artificial Neural Networks (ANN) to predict the excess return time series using lagged value. For the Artificial Neural Networks model using a Genetic Algorithm is constructed to choose the optimal topology. This paper examines the feasibility of the prediction task and provides evidence that the markets are not fluctuating randomly and finally, to apply the most suitable prediction model and measure their efficiency. 展开更多
关键词 STOCK Market Genetic Algorithm Bombay STOCK Exchange (BSE) Artificial neural network (ANN) PREDICTION Forecasting Data autoregressive (AR)
下载PDF
基于在线监测时间序列数据的水质预测模型研究进展
4
作者 秦艳 徐庆 +3 位作者 陈晓倩 刘振鸿 唐亦舜 高品 《东华大学学报(自然科学版)》 CAS 北大核心 2024年第3期116-122,共7页
当前地表水突发性污染事件频发,已造成严重的环境和社会影响,对环境监管部门应急处置能力建设提出了新要求和新挑战。地表水水质在线监测数据具有高频率和高时效等特点,系统论述了基于在线监测时间序列数据的水质预测模型的研究现状和进... 当前地表水突发性污染事件频发,已造成严重的环境和社会影响,对环境监管部门应急处置能力建设提出了新要求和新挑战。地表水水质在线监测数据具有高频率和高时效等特点,系统论述了基于在线监测时间序列数据的水质预测模型的研究现状和进展,包括数据软测量、预处理方法和水质预测模型等,分析了不同水质预测模型在应用过程中存在的问题,并对未来研究方向进行了展望,以期为水质预测预警和环境监管提供技术支持和方法参考。 展开更多
关键词 水质预测模型 在线监测 时间序列分析 自回归模型 人工神经网络
下载PDF
AR-MED共振特征增强的风电齿轮箱故障诊断
5
作者 孙抗 史晓玉 +1 位作者 赵来军 杨明 《组合机床与自动化加工技术》 北大核心 2024年第8期163-167,174,共6页
针对风电齿轮箱故障时脉冲成分往往淹没在其他频率分量中,早期故障特征难以有效提取的问题,提出一种自回归最小熵解卷积(AR-MED)共振特征增强的风电齿轮箱故障诊断方法,并结合一维卷积神经网络(1DCNN),实现齿轮箱高精度故障诊断。首先,... 针对风电齿轮箱故障时脉冲成分往往淹没在其他频率分量中,早期故障特征难以有效提取的问题,提出一种自回归最小熵解卷积(AR-MED)共振特征增强的风电齿轮箱故障诊断方法,并结合一维卷积神经网络(1DCNN),实现齿轮箱高精度故障诊断。首先,使用共振稀疏分解算法(RSSD)将振动信号分解成含有噪声和谐波成分的高共振分量和含有故障冲击成分的低共振分量;其次,对低共振分量使用自回归最小熵解卷积运算,增强低共振分量中微弱的周期性冲击成分;最后,构建自回归最小熵解卷积共振特征增强的1DCNN模型,将分解得到的谐波分量和周期性冲击分量进行特征融合以及有针对的训练和分类。实验结果表明,与现有故障诊断模型相比,所提方法在提取风电齿轮箱的故障特征信息以及提高故障诊断精度方面具有有效性和优越性。 展开更多
关键词 共振稀疏分解 自回归最小熵解卷积 特征增强 一维卷积神经网络 风电齿轮箱
下载PDF
基于深度自回归循环神经网络的边缘负载预测
6
作者 陈礼贤 梁杰 +3 位作者 黄一帆 陈哲毅 于正欣 陈星 《小型微型计算机系统》 CSCD 北大核心 2024年第2期359-366,共8页
为了更好地支持边缘计算服务提供商进行资源的提前配置与合理分配,负载预测被认为是边缘计算中的一项重要的技术支撑.传统的负载预测方法在面对具有明显趋势或规律性的负载时能取得良好的预测效果,但是它们无法有效地对边缘环境中高度... 为了更好地支持边缘计算服务提供商进行资源的提前配置与合理分配,负载预测被认为是边缘计算中的一项重要的技术支撑.传统的负载预测方法在面对具有明显趋势或规律性的负载时能取得良好的预测效果,但是它们无法有效地对边缘环境中高度变化的负载取得精确的预测.此外,这些方法通常将预测模型拟合到独立的时间序列上,进而进行单点负载实值预测.但是在实际边缘计算场景中,得到未来负载变化的概率分布情况会比直接预测未来负载的实值更具应用价值.为了解决上述问题,本文提出了一种基于深度自回归循环神经网络的边缘负载预测方法(Edge Load Prediction with Deep Auto-regressive Recurrent networks,ELP-DAR).所提出的ELP-DAR方法利用边缘负载时序数据训练深度自回归循环神经网络,将LSTM集成至S2S框架中,进而直接预测下一时间点负载概率分布的所有参数.因此,ELP-DAR方法能够高效地提取边缘负载的重要表征,学习复杂的边缘负载模式进而实现对高度变化的边缘负载精确的概率分布预测.基于真实的边缘负载数据集,通过大量仿真实验对所提出ELP-DAR方法的有效性进行了验证与分析.实验结果表明,相比于其他基准方法,所提出的ELP-DAR方法可以取得更高的预测精度,并且在不同预测长度下均展现出了优越的性能表现. 展开更多
关键词 边缘计算 负载预测 概率分布 深度自回归 循环神经网络
下载PDF
我国金融市场输入性风险的时变分析与预警研究 被引量:1
7
作者 欧阳资生 彭斌 路敏 《西安财经大学学报》 2024年第3期23-37,共15页
随着中国金融市场的高水平开放,中国应对外部输入性风险的压力将进一步上升。探索中国金融市场所面临的输入性风险动态变化并构建预警体系具有重要意义。本文运用时变参数向量自回归模型(TVP-VAR)和深度神经网络模型SCInet(Sample Convo... 随着中国金融市场的高水平开放,中国应对外部输入性风险的压力将进一步上升。探索中国金融市场所面临的输入性风险动态变化并构建预警体系具有重要意义。本文运用时变参数向量自回归模型(TVP-VAR)和深度神经网络模型SCInet(Sample Convolution and Interaction Network),对我国金融市场输入性风险进行测度和前瞻性预警。研究发现:(1)TVP-VAR模型能有效识别极端风险事件发生前的风险积累,极端风险事件时期输入性风险水平会显著提高;(2)通过与主要发达国家(或地区)和发展中国家的输入性风险对比,发现发达经济体的输入性风险波动幅度较小,通过研究各国(地区)对我国的输入性风险,发现香港地区对我国内地的风险输入水平最高,以美国为主的发达国家和以印度为主的发展中国家也向我国输送了大量风险;(3)相比于其他机器学习和神经网络模型,SCInet模型具有最优的预警性能,在输入性风险异常波动前能提前预警。本研究或可为个人规避风险、企业可持续发展、国家金融稳定提供参考和帮助。 展开更多
关键词 金融风险 输入性风险 风险预警 时变参数向量自回归 神经网络
下载PDF
基于ARIMA-LSTM的企业财务长期变化趋势预测算法 被引量:1
8
作者 杨静 刘炯 《湖北文理学院学报》 2024年第2期17-21,共5页
为了准确预测企业财务长期变化趋势,文章提出一种基于ARIMA-LSTM的企业财务长期变化趋势预测算法。通过设计ARIMA算法模型,并结合LSTM模型架构,实现基于ARIMA-LSTM的企业财务长期变化趋势预测。实验发现文中所设计方法的预测准确性较高... 为了准确预测企业财务长期变化趋势,文章提出一种基于ARIMA-LSTM的企业财务长期变化趋势预测算法。通过设计ARIMA算法模型,并结合LSTM模型架构,实现基于ARIMA-LSTM的企业财务长期变化趋势预测。实验发现文中所设计方法的预测准确性较高,拟合性能更优。 展开更多
关键词 自回归移动平均模型 长短期神经网络算法 企业财务 财务趋势
下载PDF
基于时间序列的新能源汽车销售量预测——以比亚迪为例
9
作者 邹瑞 刘吉华 许思为 《科技和产业》 2024年第15期87-93,共7页
新能源汽车的发展对于推进“双碳”目标实现起着关键作用,准确预测销量对于政策制定和企业发展有着重要意义。以比亚迪新能源汽车作为研究对象,运用其历史销量数据分别构建季节性自回归差分移动平均(SARIMA)和长短期记忆(LSTM)网络预测... 新能源汽车的发展对于推进“双碳”目标实现起着关键作用,准确预测销量对于政策制定和企业发展有着重要意义。以比亚迪新能源汽车作为研究对象,运用其历史销量数据分别构建季节性自回归差分移动平均(SARIMA)和长短期记忆(LSTM)网络预测销量。为提升模型预测效果,集成单一模型得到ARIMA-LSTM(自回归差分移动平均-长短期记忆)组合模型,将销量数据分解为线性和非线性两部分,使用ARIMA模型预测销量数据中的趋势,模型的残差及其余非线性部分的数据使用LSTM模型预测,最终将模型的预测结果合并。将组合模型应用于国内新能源汽车销量预测,预测精度为90.96%,效果较单一模型有显著提升。 展开更多
关键词 汽车销量预测 季节性自回归差分移动平均(SARIMA) 神经网络 新能源汽车
下载PDF
Influencing Factors and Prediction of Risk of Returning to Ecological Poverty in Liupan Mountain Region,China
10
作者 CUI Yunxia LIU Xiaopeng +2 位作者 JIANG Chunmei TIAN Rujun NIU Qingrui 《Chinese Geographical Science》 SCIE CSCD 2024年第3期420-435,共16页
China has resolved its overall regional poverty in 2020 by attaining moderate societal prosperity.The country has entered a new development stage designed to achieve its second centenary goal.However,ecological fragil... China has resolved its overall regional poverty in 2020 by attaining moderate societal prosperity.The country has entered a new development stage designed to achieve its second centenary goal.However,ecological fragility and risk susceptibility have increased the risk of returning to ecological poverty.In this paper,the Liupan Mountain Region of China was used as a case study,and the counties were used as the scale to reveal the spatiotempora differentiation and influcing factors of the risk of returning to poverty in study area.The indicator data for returning to ecological poverty from 2011-2020 were collected and summarized in three dimensions:ecological,economic and social.The autoregressive integrated moving average model(ARIMA)time series and exponential smoothing method(ES)were used to predict the multidimensional indicators of returning to ecological poverty for 61 counties(districts)in the Liupan Mountain Region for 2021-2030.The back propagation neural network(BPNN)and geographic information system(GIS)were used to generate the spatial distribution and time variation for the index of the risk of returning to ecological poverty(RREP index).The results show that 1)ecological factors were the main factors in the risk of returning to ecological poverty in Liupan Mountain Region.2)The RREP index for the 61 counties(districts)exhibited a downward trend from 2021-2030.The RREP index declined more in medium-and high-risk areas than in low-risk areas.From 2021 to 2025,the RREP index exhibited a slight downward trend.From 2026 to2030,the RREP index was expected to decline faster,especially from 2029-2030.3)Based on the RREP index,it can be roughly divided into three types,namely,the high-risk areas,the medium-risk areas,and the low-risk areas.The natural resource conditions in lowrisk areas of returning to ecological poverty,were better than those in medium-and high-risk areas. 展开更多
关键词 risk of returning to ecological poverty autoregressive integrated moving average model(ARIMA) exponential smoothing model back propagation neural network(BPNN) Liupan Mountain Region China
下载PDF
基于非线性自回归神经网络模型对生活垃圾产生量的预测
11
作者 朱远超 王晓燕 田光 《四川环境》 2024年第3期149-153,共5页
旨在建立生活垃圾产生量预测模型,更好的预测生活垃圾产生量,以便有序筹划生活垃圾处置设施和构建灵活的收运调配体系。方法采用非线性自回归神经网络(NAR),通过调整延迟阶数和隐含层神经元个数等模型参数,建立基于生活垃圾产生量的历... 旨在建立生活垃圾产生量预测模型,更好的预测生活垃圾产生量,以便有序筹划生活垃圾处置设施和构建灵活的收运调配体系。方法采用非线性自回归神经网络(NAR),通过调整延迟阶数和隐含层神经元个数等模型参数,建立基于生活垃圾产生量的历史时间序列预测模型。实验结果显示,NAR神经网络时间序列模型对于北京市生活垃圾产生量有较好的预测能力,当延迟阶数为5,隐含神经元个数为10时,预测模型测试集的r值为0.9717,平均绝对百分比误差为3.385%,均方根误差为5051.831 t/w,预测模型通过了残差序列非自相关检验,预测效果较好。结论表明针对生活垃圾产生量数据可以开展NAR神经网络模型非线性自回归预测,且可不用考虑其它相关影响因素数据的可获得性,具有一定的便利和实际应用意义。 展开更多
关键词 生活垃圾 预测模型 非线性自回归 神经网络
下载PDF
基于潮汐可变车道技术的智慧停车管理平台建设研究
12
作者 钟文宾 《科技资讯》 2024年第9期19-21,共3页
传统的停车管理方式不仅效率低下,而且容易造成数据不准确,无法为决策者提供准确的停车信息。为此研究为提高停车管理智能化水平,基于潮汐可变车道技术并引入非线性自相关神经网络模型对其进行改进,最终设计出一款智慧停车管理平台。经... 传统的停车管理方式不仅效率低下,而且容易造成数据不准确,无法为决策者提供准确的停车信息。为此研究为提高停车管理智能化水平,基于潮汐可变车道技术并引入非线性自相关神经网络模型对其进行改进,最终设计出一款智慧停车管理平台。经实验验证,改进后的潮汐可变道技术其交通车流量预测的平均误差为3.8%,在交通高峰期间可以准确预测交通流量。智慧停车管理平台投入使用后,解决了实际使用车位数与可用停车位数之间的失衡现象,比使用智慧停车管理平台前增加了20%以上。综上可知,此次研究的智慧管理平台可以准确地分析停车数据并进行准确的预测。 展开更多
关键词 潮汐流 可变车道 智慧停车 城市交通 非线性自回归神经网络
下载PDF
变电设备温度态势感知及辅助决策系统方案研究
13
作者 陈昱 丁鸿 +5 位作者 崔勇 朱里 陈士俊 凌秋阳 徐勇生 郑建 《发电技术》 CSCD 2024年第4期744-752,共9页
【目的】为了提升变电设备运维管理的智能化水平,及时发现并预防因设备过热导致的故障风险,保障电网安全稳定运行,提出了变电设备温度态势感知及辅助决策方案。【方法】从感知层、理解层、预测层和辅助决策层4个方面展开研究。在感知层... 【目的】为了提升变电设备运维管理的智能化水平,及时发现并预防因设备过热导致的故障风险,保障电网安全稳定运行,提出了变电设备温度态势感知及辅助决策方案。【方法】从感知层、理解层、预测层和辅助决策层4个方面展开研究。在感知层,利用K近邻(K-nearest neighbor,KNN)分类算法分析多类温度数据的关联性。在理解层,通过BP神经网络构建历史数据传递模型,以处理历史数据缺失问题。在预测层,为应对非线性数据和噪声,设计了自回归积分滑动平均(autoregressive integrated moving average,ARIMA)模型与支持向量机(support vector machine,SVM)组合的温度预测模型。在辅助决策层,应用灰色关联度分析设备温度变化与故障风险之间的关系。【结果】基于所提方案的算例验证结果表明,该方案实现了对设备未来温度变化趋势的有效感知,并为设备缺陷判断提供了依据。【结论】所提方案通过多维度、深层次的温度数据分析,揭示了设备温度与故障风险之间潜在的关联关系,实现了对变电设备运行趋势的预判,为变电设备运行方式优化以及制定设备检修计划提供参考。 展开更多
关键词 电力系统 变电站 温度态势感知 辅助决策 自回归积分滑动平均(ARIMA)模型 BP神经网络 支持向量机(SVM)
下载PDF
基于数据分解与NARX优化的滇池COD_(Mn)时间序列预测
14
作者 王永顺 崔东文 《人民珠江》 2024年第7期92-100,共9页
高锰酸盐指数(COD_(Mn))是衡量水体受还原性物质污染程度的重要指标之一。为提高COD_(Mn)预测精度,结合小波包变换(WPT)、成功历史智能优化(SHIO)算法和非线性自回归神经网络(NARX),提出WPT-SHIO-NARX COD_(Mn)时间序列预测模型。首先利... 高锰酸盐指数(COD_(Mn))是衡量水体受还原性物质污染程度的重要指标之一。为提高COD_(Mn)预测精度,结合小波包变换(WPT)、成功历史智能优化(SHIO)算法和非线性自回归神经网络(NARX),提出WPT-SHIO-NARX COD_(Mn)时间序列预测模型。首先利用WPT将COD_(Mn)时间序列分解为1个周期项分量和3个波动项分量;然后简要介绍SHIO原理,利用SHIO对NARX输入延时阶数等超参数进行调优;最后基于调优获得的超参数建立WPT-SHIO-NARX模型对COD_(Mn)周期项及波动项分量进行预测,重构后得到最终预测结果,并构建WPT-粒子群优化算法(PSO)-NARX、WPT-遗传算法(GA)-NARX、WPT-NARX、SHIO-NARX、WPT-SHIO-极限学习机(ELM)、WPT-SHIO-BP神经网络模型作对比分析,并以滇池西苑隧道断面、观音山断面2004—2015年逐周COD_(Mn)监测数据对各模型进行验证。结果表明:WPT-SHIO-NARX模型具有较好的预测性能,西苑隧道、观音山在未来1周、未来2周(半月)COD_(Mn)预测的平均绝对百分比误差MAPE分别为0.108%和0.045%、0.151%和0.165%,对未来4周(1月)COD_(Mn)预测的MAPE分别为1.383%、0.809%,对未来8周(2月)COD_(Mn)预测的MAPE分别为6.180%、4.573%,预测精度优于其他对比模型;WPT能将COD_(Mn)时序数据分解为更具规律的子序列分量,提高模型预测精度;SHIO能有效优化NARX超参数,显著提升NARX性能,优化效果优于GA、PSO;NARX网络具有延时和反馈机制,更适用于时间序列预测,其预测效果优于ELM、BP网络。 展开更多
关键词 COD_(Mn)预测 非线性自回归神经网络 成功历史智能优化算法 小波包变换 滇池
下载PDF
Quantifying the thermal damping effect in underground vertical shafts using the nonlinear autoregressive with external input(NARX) algorithm 被引量:9
15
作者 Pedram Roghanchi Karoly C.Kocsis 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第2期255-262,共8页
As air descends the intake shaft, its infrastructure, lining and the strata will emit heat during the night when the intake air is cool and, on the contrary, will absorb heat during the day when the temperature of the... As air descends the intake shaft, its infrastructure, lining and the strata will emit heat during the night when the intake air is cool and, on the contrary, will absorb heat during the day when the temperature of the air becomes greater than that of the strata. This cyclic phenomenon, also known as the "thermal damping effect" will continue throughout the year reducing the effect of surface air temperature variation. The objective of this paper is to quantify the thermal damping effect in vertical underground airways. A nonlinear autoregressive time series with external input(NARX) algorithm was used as a novel method to predict the dry-bulb temperature(Td) at the bottom of intake shafts as a function of surface air temperature. Analyses demonstrated that the artificial neural network(ANN) model could accurately predict the temperature at the bottom of a shaft. Furthermore, an attempt was made to quantify typical "damping coefficient" for both production and ventilation shafts through simple linear regression models. Comparisons between the collected climatic data and the regression-based predictions show that a simple linear regression model provides an acceptable accuracy when predicting the Tdat the bottom of intake shafts. 展开更多
关键词 UNDERGROUND mining Vertical openings THERMAL damping effect Artificial neural network NONLINEAR autoregressive with EXTERNAL input(NARX)
下载PDF
ARIMA方法预测吹填软基沉降的适用性 被引量:2
16
作者 孙长帅 王基文 +4 位作者 于天文 谭芳 宋志鑫 李敏 魏焕卫 《计算机辅助工程》 2023年第1期69-73,共5页
为解决软基沉降难以预测的问题,基于软基超载预压监测数据,建立差分自回归移动平均(ARIMA)模型、BP神经网络模型以及长短期记忆(LSTM)模型。利用堆载前期的现场监测数据训练模型,根据训练模型对后期软基的沉降进行预测。结果表明:3种模... 为解决软基沉降难以预测的问题,基于软基超载预压监测数据,建立差分自回归移动平均(ARIMA)模型、BP神经网络模型以及长短期记忆(LSTM)模型。利用堆载前期的现场监测数据训练模型,根据训练模型对后期软基的沉降进行预测。结果表明:3种模型在软基超载预压处理后的沉降预测中均表现良好,并且ARIMA模型预测能力优于BP神经网络和LSTM模型。将ARIMA模型应用于软基超载预压期间的沉降预测可行。 展开更多
关键词 差分自回归移动平均模型 BP神经网络 长短期记忆模型 沉降预测 吹填软基
下载PDF
基于AR与DNN联合模型的地理传感器时间序列预测 被引量:1
17
作者 董红斌 韩爽 付强 《计算机科学》 CSCD 北大核心 2023年第11期41-48,共8页
地理传感器时间序列具有复杂动态的语义时空相关性和地理时空相关性。尽管已经开发了各种深度学习模型用于时间序列预测,但很少有模型能专注于捕捉地理传感器时间序列内的多类型时空相关性。此外,同时预测多个传感器在未来某一时间步的... 地理传感器时间序列具有复杂动态的语义时空相关性和地理时空相关性。尽管已经开发了各种深度学习模型用于时间序列预测,但很少有模型能专注于捕捉地理传感器时间序列内的多类型时空相关性。此外,同时预测多个传感器在未来某一时间步的值非常具有挑战性。为了解决上述问题,提出了一种自回归模型与深度神经网络的联合模型(Joint model of Autoregression and Deep Neural Network,J-ARDNN),用于处理地理传感器时间序列的多目标预测任务。在该模型中,空间模块用于捕捉不同序列间多类型空间的相关性,时间模块采用时间卷积网络来提取单个序列内的时间依赖关系。此外,还引入自回归模型来提高预测模型的鲁棒性。为了验证J-ARDNN模型的有效性和优越性,在不同领域的真实时间序列数据集上进行了充分的实验,结果表明,J-ARDNN模型的预测性能优于对比方法。 展开更多
关键词 地理传感器时间序列 多目标预测 时空相关性 自回归模型 深度神经网络
下载PDF
基于EEMD-LSTM-ARIMA的土石坝渗压预测模型研究 被引量:2
18
作者 岑威钧 王肖鑫 蒋明欢 《水资源与水工程学报》 CSCD 北大核心 2023年第2期180-185,共6页
渗压监测是土石坝渗流安全评价的重要内容之一。由于渗压受到诸多外界因素的影响,测点的渗压值时间序列往往存在非平稳性、局部突变等特点,为此基于“分解-重构-组合”的思想构建了土石坝渗压预测的EEMD-LSTM-ARIMA模型。首先采用集合... 渗压监测是土石坝渗流安全评价的重要内容之一。由于渗压受到诸多外界因素的影响,测点的渗压值时间序列往往存在非平稳性、局部突变等特点,为此基于“分解-重构-组合”的思想构建了土石坝渗压预测的EEMD-LSTM-ARIMA模型。首先采用集合经验模态分解(EEMD)对时间序列特征进行提取,根据长短期记忆神经网络(LSTM)对提取出的特征分量进行预测,同时结合差分自回归移动平均方法(ARIMA)进行残差修正,组合LSTM和ARIMA的预测结果,重构得到改进预测模型。以某深厚覆盖层上的土石坝工程为例,选取主河床坝体防渗墙后2个典型测点的实测渗压值序列为研究对象进行应用验证。结果表明:相较于单一的LSTM模型和ARIMA模型,改进模型的平均绝对误差MAE、均方误差MSE、均方根误差RMSE均为3种模型中的最小值,预测精度明显优于另外2种模型,该模型为土石坝渗压的精确预测分析提供了新途径。 展开更多
关键词 土石坝 渗压预测 集合经验模态分解 长短期记忆神经网络 差分自回归移动平均
下载PDF
基于DeepAR与特征选择的锂离子电池在线状态估计
19
作者 史永胜 任嘉睿 +1 位作者 李锦 张凯 《电源学报》 CSCD 北大核心 2023年第2期163-171,共9页
电池健康状态SOH(state-of-health)和荷电状态SOC(state-of-charge)估计是电池管理系统的核心功能。目前,状态估计存在依赖大量历史数据以及单一状态估计适应性差的问题,因此提出一种基于DeepAR与特征选择的锂离子电池状态估计模型。首... 电池健康状态SOH(state-of-health)和荷电状态SOC(state-of-charge)估计是电池管理系统的核心功能。目前,状态估计存在依赖大量历史数据以及单一状态估计适应性差的问题,因此提出一种基于DeepAR与特征选择的锂离子电池状态估计模型。首先,提取电池恒流充电过程中电压、温度及时间间隔数据,组成3组老化特征作为模型输入,用于估计SOH;然后,在估计SOC时考虑SOH估计值,消除了电池老化因素对SOC估算的负面影响;最后,在不同工况下的牛津电池数据集上进行实验验证,并与其他两种算法模型进行误差与收敛性对比。结果表明,所提模型在冷启动估计方面具有较强的优势,SOH和SOC估计精度较高。 展开更多
关键词 锂离子电池 健康状态 荷电状态 自回归循环神经网络
下载PDF
基于神经网络PID的疏浚管道泥浆流速控制
20
作者 蒋爽 刘世纪 +1 位作者 高礼科 倪福生 《计算机测量与控制》 2023年第11期198-203,220,共7页
疏浚作业中,泥浆管道内物料的组成、粒径、浓度等随水下地形土质等变化很大,易造成流速波动甚至堵管、爆管等故障,因此泥浆流速稳定控制对泥浆输送的效率和安全具有重要意义;疏浚管道输送系统具有非线性、大时滞和参数时变等特征,传统PI... 疏浚作业中,泥浆管道内物料的组成、粒径、浓度等随水下地形土质等变化很大,易造成流速波动甚至堵管、爆管等故障,因此泥浆流速稳定控制对泥浆输送的效率和安全具有重要意义;疏浚管道输送系统具有非线性、大时滞和参数时变等特征,传统PID控制方法效果不佳,故此将BP神经网络和传统PID控制算法相结合,并将其应用于泥浆流速控制中;以河海大学管道输送实验平台为对象,采用受控自回归CAR模型描述泥泵变频器频率与管道泥浆流速之间的关系,通过实验和数值处理对模型进行离线辨识;在此基础上通过仿真对比传统PID、单神经元PID和BP-PID的流速控制性能,发现BP-PID控制器的超调量仅为3.8%,响应时间为11 s,控制性能较好;最后通过在体积浓度-10%到-30%泥浆范围内,泥浆浓度小幅度和大幅度增减实验,对流速控制方法进行了验证,结果表明在浓度平缓或剧烈波动时,采用BP-PID控制算法的流速控制系统,均能够在保证输送安全的前提下,快速、稳定地达到目标流速,具有较好的自适应控制性能。 展开更多
关键词 疏浚工程 泥浆流速控制 泥泵管道输送实验台 受控自回归模型 神经网络PID 单神经元PID
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部