Mode-division multiplexing technology has been proposed as a crucial technique for enhancing communication capacity and alleviating growing communication demands.Optical switching,which is an essential component of op...Mode-division multiplexing technology has been proposed as a crucial technique for enhancing communication capacity and alleviating growing communication demands.Optical switching,which is an essential component of optical communication systems,enables information exchange between channels.However,existing optical switching solutions are inadequate for addressing flexible information exchange among the mode channels.In this study,we introduced a flexible mode switching system in a multimode fibre based on an optical neural network chip.This system utilised the flexibility of on-chip optical neural networks along with an all-fibre orbital angular momentum(OAM)mode multiplexer-demultiplexer to achieve mode switching among the three OAM modes within a multimode fibre.The system adopted an improved gradient descent algorithm to achieve training for arbitrary 3×3 exchange matrices and ensured maximum crosstalk of less than-18.7 dB,thus enabling arbitrary inter-mode channel information exchange.The proposed optical-neural-network-based mode-switching system was experimentally validated by successfully transmitting different modulation formats across various modes.This innovative solution holds promise for providing effective optical switching in practical multimode communication networks.展开更多
1 INTRODUCTIONWood chip refining is the most critical step in mechanical pulping.Commercical experi-ences have been gained for years.Modelling and control of chip refiners,however,pose a challenge mainly because of th...1 INTRODUCTIONWood chip refining is the most critical step in mechanical pulping.Commercical experi-ences have been gained for years.Modelling and control of chip refiners,however,pose a challenge mainly because of the stochastic nature of the process.Some attemptshave been made to employ factor analysis technique[1]in the modelling andsimulating of refiner operation[2,3].Strand[2]used common factors as links betweenintrinsic fibre properties and pulp quality.He believed that a qualitative concept onthe physical nature of these common factors could be arrived at,and thus would helpto understand what refining variables need to be controlled or adjusted in order to im-prove pulp quality.However,the linear model used in factor analysis is based on theassumption that the interactions among the system variables are linear,which,ofcourse,is not true in practice.展开更多
In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical...In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical communication sys-tems.To enable flexible data management and cope with the mixing between different channels,the integrated reconfig-urable optical processor is used for optical switching and mitigating the channel crosstalk.However,efficient online train-ing becomes intricate and challenging,particularly when dealing with a significant number of channels.Here we use the stochastic parallel gradient descent(SPGD)algorithm to configure the integrated optical processor,which has less com-putation than the traditional gradient descent(GD)algorithm.We design and fabricate a 6×6 on-chip optical processor on silicon platform to implement optical switching and descrambling assisted by the online training with the SPDG algorithm.Moreover,we apply the on-chip processor configured by the SPGD algorithm to optical communications for optical switching and efficiently mitigating the channel crosstalk in SDM systems.In comparison with the traditional GD al-gorithm,it is found that the SPGD algorithm features better performance especially when the scale of matrix is large,which means it has the potential to optimize large-scale optical matrix computation acceleration chips.展开更多
In an optoelectronic 2-D programmable neural network system, optical data need to be transferred and feedback with high speed. This paper presents the design and implementation of the interface circuit and its software.
The theoretical basis of the grinding chips thermal flow being regarded as the characteristic signal of on line identification is summarized. And on line identification of grinding burn and wheel wear based on the g...The theoretical basis of the grinding chips thermal flow being regarded as the characteristic signal of on line identification is summarized. And on line identification of grinding burn and wheel wear based on the grinding chips thermal flow is introduc展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(62125503,62261160388)Natural Science Foundation of Hubei Province of China(2023AFA028)+1 种基金Key R&D Program of Hubei Province of China(2020BAB001,2021BAA024)Innovation Project of Optics Valley Laboratory(OVL2021BG004).
文摘Mode-division multiplexing technology has been proposed as a crucial technique for enhancing communication capacity and alleviating growing communication demands.Optical switching,which is an essential component of optical communication systems,enables information exchange between channels.However,existing optical switching solutions are inadequate for addressing flexible information exchange among the mode channels.In this study,we introduced a flexible mode switching system in a multimode fibre based on an optical neural network chip.This system utilised the flexibility of on-chip optical neural networks along with an all-fibre orbital angular momentum(OAM)mode multiplexer-demultiplexer to achieve mode switching among the three OAM modes within a multimode fibre.The system adopted an improved gradient descent algorithm to achieve training for arbitrary 3×3 exchange matrices and ensured maximum crosstalk of less than-18.7 dB,thus enabling arbitrary inter-mode channel information exchange.The proposed optical-neural-network-based mode-switching system was experimentally validated by successfully transmitting different modulation formats across various modes.This innovative solution holds promise for providing effective optical switching in practical multimode communication networks.
文摘1 INTRODUCTIONWood chip refining is the most critical step in mechanical pulping.Commercical experi-ences have been gained for years.Modelling and control of chip refiners,however,pose a challenge mainly because of the stochastic nature of the process.Some attemptshave been made to employ factor analysis technique[1]in the modelling andsimulating of refiner operation[2,3].Strand[2]used common factors as links betweenintrinsic fibre properties and pulp quality.He believed that a qualitative concept onthe physical nature of these common factors could be arrived at,and thus would helpto understand what refining variables need to be controlled or adjusted in order to im-prove pulp quality.However,the linear model used in factor analysis is based on theassumption that the interactions among the system variables are linear,which,ofcourse,is not true in practice.
基金supported by the National Natural Science Foundation of China(NSFC)(62125503,62261160388)the Natural Science Foundation of Hubei Province of China(2023AFA028)the Innovation Project of Optics Valley Laboratory(OVL2021BG004).
文摘In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical communication sys-tems.To enable flexible data management and cope with the mixing between different channels,the integrated reconfig-urable optical processor is used for optical switching and mitigating the channel crosstalk.However,efficient online train-ing becomes intricate and challenging,particularly when dealing with a significant number of channels.Here we use the stochastic parallel gradient descent(SPGD)algorithm to configure the integrated optical processor,which has less com-putation than the traditional gradient descent(GD)algorithm.We design and fabricate a 6×6 on-chip optical processor on silicon platform to implement optical switching and descrambling assisted by the online training with the SPDG algorithm.Moreover,we apply the on-chip processor configured by the SPGD algorithm to optical communications for optical switching and efficiently mitigating the channel crosstalk in SDM systems.In comparison with the traditional GD al-gorithm,it is found that the SPGD algorithm features better performance especially when the scale of matrix is large,which means it has the potential to optimize large-scale optical matrix computation acceleration chips.
基金Supported by the National High Technology programme of Chinathe Climbing Programme National Key Project for Fundamental Research in China,Grant NSC 92097
文摘In an optoelectronic 2-D programmable neural network system, optical data need to be transferred and feedback with high speed. This paper presents the design and implementation of the interface circuit and its software.
文摘The theoretical basis of the grinding chips thermal flow being regarded as the characteristic signal of on line identification is summarized. And on line identification of grinding burn and wheel wear based on the grinding chips thermal flow is introduc