Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion with...Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion within elevator systems. Many passengers experience dissatisfaction with prolonged wait times, leading to impatience and frustration among building occupants. The widespread adoption of neural networks and deep learning technologies across various fields and industries represents a significant paradigm shift, and unlocking new avenues for innovation and advancement. These cutting-edge technologies offer unprecedented opportunities to address complex challenges and optimize processes in diverse domains. In this study, LSTM (Long Short-Term Memory) network technology is leveraged to analyze elevator traffic flow within a typical office building. By harnessing the predictive capabilities of LSTM, the research aims to contribute to advancements in elevator group control design, ultimately enhancing the functionality and efficiency of vertical transportation systems in built environments. The findings of this research have the potential to reference the development of intelligent elevator management systems, capable of dynamically adapting to fluctuating passenger demand and optimizing elevator usage in real-time. By enhancing the efficiency and functionality of vertical transportation systems, the research contributes to creating more sustainable, accessible, and user-friendly living environments for individuals across diverse demographics.展开更多
A new concept, the generalized inverse group (GIG) of signal, is firstly proposed and its properties, leaking coefficients and implementation with neural networks are presented. Theoretical analysis and computational ...A new concept, the generalized inverse group (GIG) of signal, is firstly proposed and its properties, leaking coefficients and implementation with neural networks are presented. Theoretical analysis and computational simulation have shown that (1) there is a group of finite length of generalized inverse signals for any given finite signal, which forms the GIG; (2) each inverse group has different leaking coefficients, thus different abnormal states; (3) each GIG can be implemented by a grouped and improved single-layer perceptron which appears with fast convergence. When used in deconvolution, the proposed GIG can form a new parallel finite length of filtering deconvolution method. On off-line processing, the computational time is reduced to O(N) from O(N2). And the less the leaking coefficient is, the more reliable the deconvolution will be.展开更多
目的通过机器学习分析“舌边白涎”舌象特性,对舌象进行局部特征识别研究,探讨卷积神经网络算法在舌象识别应用中的性能。方法使用Python进行图像预处理,搭建用于舌象识别的视觉几何组16层(visual geometry group 16,VGG16)卷积神经网...目的通过机器学习分析“舌边白涎”舌象特性,对舌象进行局部特征识别研究,探讨卷积神经网络算法在舌象识别应用中的性能。方法使用Python进行图像预处理,搭建用于舌象识别的视觉几何组16层(visual geometry group 16,VGG16)卷积神经网络模型,分析其对“舌边白涎”舌象鉴别分析的效果,并结合热力图分析“舌边白涎”典型舌象表现。结果基于PyTorch框架,进行卷积神经网络的舌象鉴别研究,VGG16及残差网络50层(residual network 50,ResNet50)模型验证准确率均较高,达到80%以上,且ResNet50模型优于VGG16模型,可为舌象识别提供一定参考。基于加权梯度类激活映射(gradient-weighted class activation mapping,Grad-CAM)技术,通过舌苔舌色差异分布的网络可视化,有助于直观进行模型评估分析。结论基于卷积神经网络模型对舌象数据库进行分析,实现“舌边白涎”舌象识别,有助于临床诊疗的客观化辅助分析,为舌诊智能化发展提供一定借鉴。展开更多
为了解决寻常型银屑病在样本分布不平衡的数据中可能会导致的深度学习模型诊断效果下降等问题,通过结合改进模糊KMeans聚类算法对高聚类复杂度数据的处理能力以及Visual Geometry Group 13(VGG13)深度卷积神经网络模型的预测能力,提出...为了解决寻常型银屑病在样本分布不平衡的数据中可能会导致的深度学习模型诊断效果下降等问题,通过结合改进模糊KMeans聚类算法对高聚类复杂度数据的处理能力以及Visual Geometry Group 13(VGG13)深度卷积神经网络模型的预测能力,提出一种基于改进模糊KMeans聚类算法的VGG13深度卷积神经网络(VGG13-KMeans)模型,并将其应用于寻常型银屑病的诊断任务中。实验结果表明,相较于VGG13以及ResNet18两种方法,本文方法更适用于对银屑病特征的识别。展开更多
文摘Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion within elevator systems. Many passengers experience dissatisfaction with prolonged wait times, leading to impatience and frustration among building occupants. The widespread adoption of neural networks and deep learning technologies across various fields and industries represents a significant paradigm shift, and unlocking new avenues for innovation and advancement. These cutting-edge technologies offer unprecedented opportunities to address complex challenges and optimize processes in diverse domains. In this study, LSTM (Long Short-Term Memory) network technology is leveraged to analyze elevator traffic flow within a typical office building. By harnessing the predictive capabilities of LSTM, the research aims to contribute to advancements in elevator group control design, ultimately enhancing the functionality and efficiency of vertical transportation systems in built environments. The findings of this research have the potential to reference the development of intelligent elevator management systems, capable of dynamically adapting to fluctuating passenger demand and optimizing elevator usage in real-time. By enhancing the efficiency and functionality of vertical transportation systems, the research contributes to creating more sustainable, accessible, and user-friendly living environments for individuals across diverse demographics.
基金Supported partly by Natural Science Foundation of ChinaAviation Science Grant of China
文摘A new concept, the generalized inverse group (GIG) of signal, is firstly proposed and its properties, leaking coefficients and implementation with neural networks are presented. Theoretical analysis and computational simulation have shown that (1) there is a group of finite length of generalized inverse signals for any given finite signal, which forms the GIG; (2) each inverse group has different leaking coefficients, thus different abnormal states; (3) each GIG can be implemented by a grouped and improved single-layer perceptron which appears with fast convergence. When used in deconvolution, the proposed GIG can form a new parallel finite length of filtering deconvolution method. On off-line processing, the computational time is reduced to O(N) from O(N2). And the less the leaking coefficient is, the more reliable the deconvolution will be.
文摘目的通过机器学习分析“舌边白涎”舌象特性,对舌象进行局部特征识别研究,探讨卷积神经网络算法在舌象识别应用中的性能。方法使用Python进行图像预处理,搭建用于舌象识别的视觉几何组16层(visual geometry group 16,VGG16)卷积神经网络模型,分析其对“舌边白涎”舌象鉴别分析的效果,并结合热力图分析“舌边白涎”典型舌象表现。结果基于PyTorch框架,进行卷积神经网络的舌象鉴别研究,VGG16及残差网络50层(residual network 50,ResNet50)模型验证准确率均较高,达到80%以上,且ResNet50模型优于VGG16模型,可为舌象识别提供一定参考。基于加权梯度类激活映射(gradient-weighted class activation mapping,Grad-CAM)技术,通过舌苔舌色差异分布的网络可视化,有助于直观进行模型评估分析。结论基于卷积神经网络模型对舌象数据库进行分析,实现“舌边白涎”舌象识别,有助于临床诊疗的客观化辅助分析,为舌诊智能化发展提供一定借鉴。
文摘为了解决寻常型银屑病在样本分布不平衡的数据中可能会导致的深度学习模型诊断效果下降等问题,通过结合改进模糊KMeans聚类算法对高聚类复杂度数据的处理能力以及Visual Geometry Group 13(VGG13)深度卷积神经网络模型的预测能力,提出一种基于改进模糊KMeans聚类算法的VGG13深度卷积神经网络(VGG13-KMeans)模型,并将其应用于寻常型银屑病的诊断任务中。实验结果表明,相较于VGG13以及ResNet18两种方法,本文方法更适用于对银屑病特征的识别。