In this paper, neural networks are used to approximately solve the finite-horizon constrained input H-infinity state feedback control problem. The method is based on solving a related Hamilton-Jacobi-Isaacs equation o...In this paper, neural networks are used to approximately solve the finite-horizon constrained input H-infinity state feedback control problem. The method is based on solving a related Hamilton-Jacobi-Isaacs equation of the corresponding finite-horizon zero-sum game. The game value function is approximated by a neural network with time- varying weights. It is shown that the neural network approximation converges uniformly to the game-value function and the resulting almost optimal constrained feedback controller provides closed-loop stability and bounded L2 gain. The result is an almost optimal H-infinity feedback controller with time-varying coefficients that is solved a priori off-line. The effectiveness of the method is shown on the Rotational/Translational Actuator benchmark nonlinear control problem.展开更多
A robust neural network controller (NNC) is presented for tracking control of underwater vehicles with uncertainties. The controller is obtained by using backstepping technique and Lyapunov function design in combin...A robust neural network controller (NNC) is presented for tracking control of underwater vehicles with uncertainties. The controller is obtained by using backstepping technique and Lyapunov function design in combination with neural network identification. Modeling errors and environmental disturbances are considered in the mathematical model. A twolayer neural network is introduced to compensate the modeling errors, while H∞ control strategy is used to achieve the L2-gain performance. The uniformly ultimately bounded (UUB) stabilities of tracking errors and NN weights are guaran- teed through the proposed controller. An on-line NN weights tuning algorithm is also propesed. Good performances of the tracking control system are illustrated bv the results of numerical simulations.展开更多
This paper discusses H-infinity state feedback control for a networked control system with time-varying delays. Based on the flee-weighing matrix method, a dehy-dependent stability criterion satisfying a prescribed H-...This paper discusses H-infinity state feedback control for a networked control system with time-varying delays. Based on the flee-weighing matrix method, a dehy-dependent stability criterion satisfying a prescribed H-infinity norm bound is presented for an NCS with unknown, time-varying and bounded delays. And then, the criterion is transformed into sufficient conditions based on linear matrix inequalities for H-infinity control. The conditions thus obtained are also used to design an H-infinity state feedback controller. This design method is further extended to solve the design problem of robust H-infinity state feedback control. A numerical example demonstrates the validity of the method.展开更多
For a single machine infinite power system with thyristor controlled series compensation(TCSC) device, which is affected by system model uncertainties, nonlinear time-delays and external unknown disturbances, we prese...For a single machine infinite power system with thyristor controlled series compensation(TCSC) device, which is affected by system model uncertainties, nonlinear time-delays and external unknown disturbances, we present a robust adaptive backstepping control scheme based on the radial basis function neural network(RBFNN). The RBFNN is introduced to approximate the complex nonlinear function involving uncertainties and external unknown disturbances, and meanwhile a new robust term is constructed to further estimate the system residual error,which removes the requirement of knowing the upper bound of the disturbances and uncertainty terms. The stability analysis of the power system is presented based on the Lyapunov function,which can guarantee the uniform ultimate boundedness(UUB) of all parameters and states of the whole closed-loop system. A comparison is made between the RBFNN-based robust adaptive control and the general backstepping control in the simulation part to verify the effectiveness of the proposed control scheme.展开更多
Taking advantage of their inherent dexterity,robotic arms are competent in completing many tasks efficiently.As a result of the modeling complexity and kinematic uncertainty of robotic arms,model-free control paradigm...Taking advantage of their inherent dexterity,robotic arms are competent in completing many tasks efficiently.As a result of the modeling complexity and kinematic uncertainty of robotic arms,model-free control paradigm has been proposed and investigated extensively.However,robust model-free control of robotic arms in the presence of noise interference remains a problem worth studying.In this paper,we first propose a new kind of zeroing neural network(ZNN),i.e.,integration-enhanced noise-tolerant ZNN(IENT-ZNN)with integration-enhanced noisetolerant capability.Then,a unified dual IENT-ZNN scheme based on the proposed IENT-ZNN is presented for the kinematic control problem of both rigid-link and continuum robotic arms,which improves the performance of robotic arms with the disturbance of noise,without knowing the structural parameters of the robotic arms.The finite-time convergence and robustness of the proposed control scheme are proven by theoretical analysis.Finally,simulation studies and experimental demonstrations verify that the proposed control scheme is feasible in the kinematic control of different robotic arms and can achieve better results in terms of accuracy and robustness.展开更多
This paper proposed a robust adaptive neural network control for an XY table. The XY table composes of two AC servo drives controlled independently. The neural network with radial basis function is employed for veloci...This paper proposed a robust adaptive neural network control for an XY table. The XY table composes of two AC servo drives controlled independently. The neural network with radial basis function is employed for velocity and position tracking control of AC servo drives to improve the system’s dynamic performance and precision. A robust adaptive term is applied to overcome the external disturbances. The stability and the convergence of the system are proved by Lyapunov theory. The proposed controller is implemented in a DSP-based motion board. The validity and robustness of the controller are verified through experimental results.展开更多
The purpose of this paper is the design of neural network-based adaptive sliding mode controller for uncertain unknown nonlinear systems. A special architecture adaptive neural network, with hyperbolic tangent activat...The purpose of this paper is the design of neural network-based adaptive sliding mode controller for uncertain unknown nonlinear systems. A special architecture adaptive neural network, with hyperbolic tangent activation functions, is used to emulate the equivalent and switching control terms of the classic sliding mode control (SMC). Lyapunov stability theory is used to guarantee a uniform ultimate boundedness property for the tracking error, as well as of all other signals in the closed loop. In addition to keeping the stability and robustness properties of the SMC, the neural network-based adaptive sliding mode controller exhibits perfect rejection of faults arising during the system operating. Simulation studies are used to illustrate and clarify the theoretical results.展开更多
In this paper, a novel control law is presented, which uses neural-network techniques to approximate the affine class nonlinear system having unknown or uncertain dynamics and noise disturbances. It adopts an adaptive...In this paper, a novel control law is presented, which uses neural-network techniques to approximate the affine class nonlinear system having unknown or uncertain dynamics and noise disturbances. It adopts an adaptive control law to adjust the network parameters online and adds another control component according to H-infinity control theory to attenuate the disturbance. This control law is applied to the position tracking control of pneumatic servo systems. Simulation and experimental results show that the tracking precision and convergence speed is obviously superior to the results by using the basic BP-network controller and self-tuning adaptive controller.展开更多
The robust stability of uncertain neural network with time-varying delay was investigated.The norm-bounded uncertainties are included in the system matrices.The constraint on time-varying delays is removed,which means...The robust stability of uncertain neural network with time-varying delay was investigated.The norm-bounded uncertainties are included in the system matrices.The constraint on time-varying delays is removed,which means that a fast time-varying delay is admissible.Some new delay-dependent stability criteria were presented by using Lyapunov-Krasovskii functional and linear matrix inequalities(LMIs) approaches.Finally,a numerical example was given to illustrate the effectiveness and innovation nature of the developed techniques.展开更多
Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be reg...Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be regarded as a process of searching optimal structure from controller structure space and searching optimal parameters from parameter space. Based on this view, an intelligent vehicle lateral motions controller was designed. The controller structure was constructed by T-S fuzzy-neural network (FNN). Its parameters were searched and selected with genetic algorithm (GA). The simulation results indicate that the controller designed has strong robustness, high precision and good ride quality, and it can effectively resolve IV lateral motion non-linearity and time-variant parameters problem.展开更多
A robust adaptive controller for a nonholonomic mobile robot with unknown kinematic and dynamic parameters is proposed. A kinematic controller whose output is the input of the relevant dynamic controller is provided b...A robust adaptive controller for a nonholonomic mobile robot with unknown kinematic and dynamic parameters is proposed. A kinematic controller whose output is the input of the relevant dynamic controller is provided by using the concept of backstepping. An adaptive algorithm is developed in the kinematic controller to approximate the unknown kinematic parameters, and a simple single-layer neural network is used to express the highly nonlinear robot dynamics in terms of the known and unknown parameters. In order to attenuate the effects of the uncertainties and disturbances on tracking performance, a sliding mode control term is added to the dynamic controller. In the deterministic design of feedback controllers for the uncertain dynamic systems, upper bounds on the norm of the uncertainties are an important clue to guarantee the stability of the closed-loop system. However, sometimes these upper bounds may not be easily obtained because of the complexity of the structure of the uncertainties. Thereby, simple adaptation laws are proposed to approximate upper bounds on the norm of the uncertainties to address this problem. The stability of the proposed control system is shown through the Lyapunov method. Lastly, a design example for a mobile robot with two actuated wheels is provided and the feasibility of the controller is demonstrated by numerical simulations.展开更多
In this paper, a robust adaptive control scheme is proposed for the stabilization of uncertain linear systems with discrete and distributed delays and bounded perturbations. The uncertainty is assumed to be an unknown...In this paper, a robust adaptive control scheme is proposed for the stabilization of uncertain linear systems with discrete and distributed delays and bounded perturbations. The uncertainty is assumed to be an unknown continuous function with norm-bounded restriction. The perturbation is sector-bounded. Combining with the liner matrix inequality method, neural networks and adaptive control, the control scheme ensures the exponential stability of the closed-loop system for any admissible uncertainty.展开更多
A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation ...A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity.展开更多
In this paper, stable indirect adaptive control with recurrent neural networks (RNN) is presented for square multivariable non-linear plants with unknown dynamics. The control scheme is made of an adaptive instantaneo...In this paper, stable indirect adaptive control with recurrent neural networks (RNN) is presented for square multivariable non-linear plants with unknown dynamics. The control scheme is made of an adaptive instantaneous neural model, a neural controller based on fully connected “Real-Time Recurrent Learning” (RTRL) networks and an online parameters updating law. Closed-loop performances as well as sufficient conditions for asymptotic stability are derived from the Lyapunov approach according to the adaptive updating rate parameter. Robustness is also considered in terms of sensor noise and model uncertainties. This control scheme is applied to the manipulator robot process in order to illustrate the efficiency of the proposed method for real-world control problems.展开更多
Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based ...Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based on this, a new algorithm is presented to design the feedforward controller. However, zero phase error controller is only suitable for certain linear system. To reduce the tracking error and improve robustness, the design of the proposed feedforward controller uses a neural compensation based on diagonal recurrent neural network. Simulation and real-time control results for flight simulator servo system show the effectiveness of the proposed approach.展开更多
In this paper,the problems of robust consensus tracking control for the second-order multi-agent system with uncertain model parameters and nonlinear disturbances are considered.An adaptive control strategy is propose...In this paper,the problems of robust consensus tracking control for the second-order multi-agent system with uncertain model parameters and nonlinear disturbances are considered.An adaptive control strategy is proposed to smooth the agent’s trajectory,and the neural network is constructed to estimate the system’s unknown components.The consensus conditions are demonstrated for tracking a leader with nonlinear dynamics under an adaptive control algorithm in the absence of model uncertainties.Then,the results are extended to the system with unknown time-varying disturbances by applying the neural network estimation to compensating for the uncertain parts of the agents’models.Update laws are designed based on the Lyapunov function terms to ensure the effectiveness of robust control.Finally,the theoretical results are verified by numerical simulations,and a comparative experiment is conducted,showing that the trajectories generated by the proposed method exhibit less oscillation and converge faster.展开更多
A neural-network-based robust control design is suggested for control of a class of nonlinear systems. The design ap- proach employs a neural network, whose activation functions satisfy the sector conditions, to appro...A neural-network-based robust control design is suggested for control of a class of nonlinear systems. The design ap- proach employs a neural network, whose activation functions satisfy the sector conditions, to approximate the nonlinear system. To improve the approximation performance and to account for the parameter perturbations during operation, a novel neural network model termed standard neural network model (SNNM) is proposed. If the uncertainty is bounded, the SNNM is called an interval SNNM (ISNNM). A state-feedback control law is designed for the nonlinear system modelled by an ISNNM such that the closed-loop system is globally, robustly, and asymptotically stable. The control design equations are shown to be a set of linear matrix inequalities (LMIs) that can be easily solved by available convex optimization algorithms. An example is given to illustrate the control design procedure, and the performance of the proposed approach is compared with that of a related method reported in literature.展开更多
基金This work was supported by the National Science Foundation (ECS-0501451)Army Research Office (W91NF-05-1-0314).
文摘In this paper, neural networks are used to approximately solve the finite-horizon constrained input H-infinity state feedback control problem. The method is based on solving a related Hamilton-Jacobi-Isaacs equation of the corresponding finite-horizon zero-sum game. The game value function is approximated by a neural network with time- varying weights. It is shown that the neural network approximation converges uniformly to the game-value function and the resulting almost optimal constrained feedback controller provides closed-loop stability and bounded L2 gain. The result is an almost optimal H-infinity feedback controller with time-varying coefficients that is solved a priori off-line. The effectiveness of the method is shown on the Rotational/Translational Actuator benchmark nonlinear control problem.
基金This work wasfinancially supported bythe National Natural Science Foundation of China (Gsant No10572094)the Special Research Fundfor the Doctoral Programof Higher Education (Grant No20050248037)
文摘A robust neural network controller (NNC) is presented for tracking control of underwater vehicles with uncertainties. The controller is obtained by using backstepping technique and Lyapunov function design in combination with neural network identification. Modeling errors and environmental disturbances are considered in the mathematical model. A twolayer neural network is introduced to compensate the modeling errors, while H∞ control strategy is used to achieve the L2-gain performance. The uniformly ultimately bounded (UUB) stabilities of tracking errors and NN weights are guaran- teed through the proposed controller. An on-line NN weights tuning algorithm is also propesed. Good performances of the tracking control system are illustrated bv the results of numerical simulations.
文摘This paper discusses H-infinity state feedback control for a networked control system with time-varying delays. Based on the flee-weighing matrix method, a dehy-dependent stability criterion satisfying a prescribed H-infinity norm bound is presented for an NCS with unknown, time-varying and bounded delays. And then, the criterion is transformed into sufficient conditions based on linear matrix inequalities for H-infinity control. The conditions thus obtained are also used to design an H-infinity state feedback controller. This design method is further extended to solve the design problem of robust H-infinity state feedback control. A numerical example demonstrates the validity of the method.
基金supported in part by the National Natural Science Foundation of China(61433004,61703289)
文摘For a single machine infinite power system with thyristor controlled series compensation(TCSC) device, which is affected by system model uncertainties, nonlinear time-delays and external unknown disturbances, we present a robust adaptive backstepping control scheme based on the radial basis function neural network(RBFNN). The RBFNN is introduced to approximate the complex nonlinear function involving uncertainties and external unknown disturbances, and meanwhile a new robust term is constructed to further estimate the system residual error,which removes the requirement of knowing the upper bound of the disturbances and uncertainty terms. The stability analysis of the power system is presented based on the Lyapunov function,which can guarantee the uniform ultimate boundedness(UUB) of all parameters and states of the whole closed-loop system. A comparison is made between the RBFNN-based robust adaptive control and the general backstepping control in the simulation part to verify the effectiveness of the proposed control scheme.
基金supported by the National Natural Science Foundation of China(62173352,62103112)the Guangdong Basic and Applied Basic Research Foundation(2021A1515012314)+1 种基金the Open Project of Shenzhen Institute of Artificial Intelligence and Robotics for Society(AC01202005006)the Key-Area Research and Development Program of Guangzhou(202007030004)。
文摘Taking advantage of their inherent dexterity,robotic arms are competent in completing many tasks efficiently.As a result of the modeling complexity and kinematic uncertainty of robotic arms,model-free control paradigm has been proposed and investigated extensively.However,robust model-free control of robotic arms in the presence of noise interference remains a problem worth studying.In this paper,we first propose a new kind of zeroing neural network(ZNN),i.e.,integration-enhanced noise-tolerant ZNN(IENT-ZNN)with integration-enhanced noisetolerant capability.Then,a unified dual IENT-ZNN scheme based on the proposed IENT-ZNN is presented for the kinematic control problem of both rigid-link and continuum robotic arms,which improves the performance of robotic arms with the disturbance of noise,without knowing the structural parameters of the robotic arms.The finite-time convergence and robustness of the proposed control scheme are proven by theoretical analysis.Finally,simulation studies and experimental demonstrations verify that the proposed control scheme is feasible in the kinematic control of different robotic arms and can achieve better results in terms of accuracy and robustness.
文摘This paper proposed a robust adaptive neural network control for an XY table. The XY table composes of two AC servo drives controlled independently. The neural network with radial basis function is employed for velocity and position tracking control of AC servo drives to improve the system’s dynamic performance and precision. A robust adaptive term is applied to overcome the external disturbances. The stability and the convergence of the system are proved by Lyapunov theory. The proposed controller is implemented in a DSP-based motion board. The validity and robustness of the controller are verified through experimental results.
文摘The purpose of this paper is the design of neural network-based adaptive sliding mode controller for uncertain unknown nonlinear systems. A special architecture adaptive neural network, with hyperbolic tangent activation functions, is used to emulate the equivalent and switching control terms of the classic sliding mode control (SMC). Lyapunov stability theory is used to guarantee a uniform ultimate boundedness property for the tracking error, as well as of all other signals in the closed loop. In addition to keeping the stability and robustness properties of the SMC, the neural network-based adaptive sliding mode controller exhibits perfect rejection of faults arising during the system operating. Simulation studies are used to illustrate and clarify the theoretical results.
基金Guangdong-Hong Kong Technology Cooperation Funding Scheme (No.2005A10207005, IID 2004-0005)the Research Grants Council of Hong Kong (No.9040407)
文摘In this paper, a novel control law is presented, which uses neural-network techniques to approximate the affine class nonlinear system having unknown or uncertain dynamics and noise disturbances. It adopts an adaptive control law to adjust the network parameters online and adds another control component according to H-infinity control theory to attenuate the disturbance. This control law is applied to the position tracking control of pneumatic servo systems. Simulation and experimental results show that the tracking precision and convergence speed is obviously superior to the results by using the basic BP-network controller and self-tuning adaptive controller.
文摘The robust stability of uncertain neural network with time-varying delay was investigated.The norm-bounded uncertainties are included in the system matrices.The constraint on time-varying delays is removed,which means that a fast time-varying delay is admissible.Some new delay-dependent stability criteria were presented by using Lyapunov-Krasovskii functional and linear matrix inequalities(LMIs) approaches.Finally,a numerical example was given to illustrate the effectiveness and innovation nature of the developed techniques.
文摘Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be regarded as a process of searching optimal structure from controller structure space and searching optimal parameters from parameter space. Based on this view, an intelligent vehicle lateral motions controller was designed. The controller structure was constructed by T-S fuzzy-neural network (FNN). Its parameters were searched and selected with genetic algorithm (GA). The simulation results indicate that the controller designed has strong robustness, high precision and good ride quality, and it can effectively resolve IV lateral motion non-linearity and time-variant parameters problem.
基金partly supported by the National Natural Science Foundation of China (No.50625516)the 863 program of China(No.2006AA09Z203,2006AA04A110)
文摘A robust adaptive controller for a nonholonomic mobile robot with unknown kinematic and dynamic parameters is proposed. A kinematic controller whose output is the input of the relevant dynamic controller is provided by using the concept of backstepping. An adaptive algorithm is developed in the kinematic controller to approximate the unknown kinematic parameters, and a simple single-layer neural network is used to express the highly nonlinear robot dynamics in terms of the known and unknown parameters. In order to attenuate the effects of the uncertainties and disturbances on tracking performance, a sliding mode control term is added to the dynamic controller. In the deterministic design of feedback controllers for the uncertain dynamic systems, upper bounds on the norm of the uncertainties are an important clue to guarantee the stability of the closed-loop system. However, sometimes these upper bounds may not be easily obtained because of the complexity of the structure of the uncertainties. Thereby, simple adaptation laws are proposed to approximate upper bounds on the norm of the uncertainties to address this problem. The stability of the proposed control system is shown through the Lyapunov method. Lastly, a design example for a mobile robot with two actuated wheels is provided and the feasibility of the controller is demonstrated by numerical simulations.
基金National Natural Science Foundation of China (No.60574006,60774017)
文摘In this paper, a robust adaptive control scheme is proposed for the stabilization of uncertain linear systems with discrete and distributed delays and bounded perturbations. The uncertainty is assumed to be an unknown continuous function with norm-bounded restriction. The perturbation is sector-bounded. Combining with the liner matrix inequality method, neural networks and adaptive control, the control scheme ensures the exponential stability of the closed-loop system for any admissible uncertainty.
基金This project was supported by the National Natural Science Foundation (No. 69875010).
文摘A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity.
文摘In this paper, stable indirect adaptive control with recurrent neural networks (RNN) is presented for square multivariable non-linear plants with unknown dynamics. The control scheme is made of an adaptive instantaneous neural model, a neural controller based on fully connected “Real-Time Recurrent Learning” (RTRL) networks and an online parameters updating law. Closed-loop performances as well as sufficient conditions for asymptotic stability are derived from the Lyapunov approach according to the adaptive updating rate parameter. Robustness is also considered in terms of sensor noise and model uncertainties. This control scheme is applied to the manipulator robot process in order to illustrate the efficiency of the proposed method for real-world control problems.
基金The project was supported by Aeronautics Foundation of China (00E51022).
文摘Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based on this, a new algorithm is presented to design the feedforward controller. However, zero phase error controller is only suitable for certain linear system. To reduce the tracking error and improve robustness, the design of the proposed feedforward controller uses a neural compensation based on diagonal recurrent neural network. Simulation and real-time control results for flight simulator servo system show the effectiveness of the proposed approach.
基金supported by the Science&Technology Department of Sichuan Province under Grant No.2020YJ0044。
文摘In this paper,the problems of robust consensus tracking control for the second-order multi-agent system with uncertain model parameters and nonlinear disturbances are considered.An adaptive control strategy is proposed to smooth the agent’s trajectory,and the neural network is constructed to estimate the system’s unknown components.The consensus conditions are demonstrated for tracking a leader with nonlinear dynamics under an adaptive control algorithm in the absence of model uncertainties.Then,the results are extended to the system with unknown time-varying disturbances by applying the neural network estimation to compensating for the uncertain parts of the agents’models.Update laws are designed based on the Lyapunov function terms to ensure the effectiveness of robust control.Finally,the theoretical results are verified by numerical simulations,and a comparative experiment is conducted,showing that the trajectories generated by the proposed method exhibit less oscillation and converge faster.
基金Project supported by the National Natural Science Foundation of China (No. 60504024), and Zhejiang Provincial Education Depart-ment (No. 20050905), China
文摘A neural-network-based robust control design is suggested for control of a class of nonlinear systems. The design ap- proach employs a neural network, whose activation functions satisfy the sector conditions, to approximate the nonlinear system. To improve the approximation performance and to account for the parameter perturbations during operation, a novel neural network model termed standard neural network model (SNNM) is proposed. If the uncertainty is bounded, the SNNM is called an interval SNNM (ISNNM). A state-feedback control law is designed for the nonlinear system modelled by an ISNNM such that the closed-loop system is globally, robustly, and asymptotically stable. The control design equations are shown to be a set of linear matrix inequalities (LMIs) that can be easily solved by available convex optimization algorithms. An example is given to illustrate the control design procedure, and the performance of the proposed approach is compared with that of a related method reported in literature.