In IBVS (image based visual servoing), the error signal in image space should be transformed into the control signal in the input space quickly. To avoid the iterative adjustment and complicated inverse solution of im...In IBVS (image based visual servoing), the error signal in image space should be transformed into the control signal in the input space quickly. To avoid the iterative adjustment and complicated inverse solution of image Jacobian, CMAC (cerebellar model articulation controller) neural network is inserted into visual servo control loop to implement the nonlinear mapping. Two control schemes are used. Simulation results on two schemes are provided, which show a better tracking precision and stability can be achieved using scheme 2.展开更多
Deep learning has achieved great success in a variety of research fields and industrial applications.However,when applied to seismic inversion,the shortage of labeled data severely influences the performance of deep l...Deep learning has achieved great success in a variety of research fields and industrial applications.However,when applied to seismic inversion,the shortage of labeled data severely influences the performance of deep learning-based methods.In order to tackle this problem,we propose a novel seismic impedance inversion method based on a cycle-consistent generative adversarial network(Cycle-GAN).The proposed Cycle-GAN model includes two generative subnets and two discriminative subnets.Three kinds of loss,including cycle-consistent loss,adversarial loss,and estimation loss,are adopted to guide the training process.Benefit from the proposed structure,the information contained in unlabeled data can be extracted,and adversarial learning further guarantees that the prediction results share similar distributions with the real data.Moreover,a neural network visualization method is adopted to show that the proposed CNN model can learn more distinguishable features than the conventional CNN model.The robustness experiments on synthetic data sets show that the proposed method can achieve better performances than other methods in most cases.And the blind-well experiments on real seismic profiles show that the predicted impedance curve of the proposed method maintains a better correlation with the true impedance curve.展开更多
Traditional vehicle detection algorithms use traverse search based vehicle candidate generation and hand crafted based classifier training for vehicle candidate verification.These types of methods generally have high ...Traditional vehicle detection algorithms use traverse search based vehicle candidate generation and hand crafted based classifier training for vehicle candidate verification.These types of methods generally have high processing times and low vehicle detection performance.To address this issue,a visual saliency and deep sparse convolution hierarchical model based vehicle detection algorithm is proposed.A visual saliency calculation is firstly used to generate a small vehicle candidate area.The vehicle candidate sub images are then loaded into a sparse deep convolution hierarchical model with an SVM-based classifier to perform the final detection.The experimental results demonstrate that the proposed method is with 94.81% correct rate and 0.78% false detection rate on the existing datasets and the real road pictures captured by our group,which outperforms the existing state-of-the-art algorithms.More importantly,high discriminative multi-scale features are generated by deep sparse convolution network which has broad application prospects in target recognition in the field of intelligent vehicle.展开更多
基金This project is supported by National Natural Science Foundation of China (No.59990470).
文摘In IBVS (image based visual servoing), the error signal in image space should be transformed into the control signal in the input space quickly. To avoid the iterative adjustment and complicated inverse solution of image Jacobian, CMAC (cerebellar model articulation controller) neural network is inserted into visual servo control loop to implement the nonlinear mapping. Two control schemes are used. Simulation results on two schemes are provided, which show a better tracking precision and stability can be achieved using scheme 2.
基金financially supported by the NSFC(Grant No.41974126 and 41674116)the National Key Research and Development Program of China(Grant No.2018YFA0702501)the 13th 5-Year Basic Research Program of China National Petroleum Corporation(CNPC)(2018A-3306)。
文摘Deep learning has achieved great success in a variety of research fields and industrial applications.However,when applied to seismic inversion,the shortage of labeled data severely influences the performance of deep learning-based methods.In order to tackle this problem,we propose a novel seismic impedance inversion method based on a cycle-consistent generative adversarial network(Cycle-GAN).The proposed Cycle-GAN model includes two generative subnets and two discriminative subnets.Three kinds of loss,including cycle-consistent loss,adversarial loss,and estimation loss,are adopted to guide the training process.Benefit from the proposed structure,the information contained in unlabeled data can be extracted,and adversarial learning further guarantees that the prediction results share similar distributions with the real data.Moreover,a neural network visualization method is adopted to show that the proposed CNN model can learn more distinguishable features than the conventional CNN model.The robustness experiments on synthetic data sets show that the proposed method can achieve better performances than other methods in most cases.And the blind-well experiments on real seismic profiles show that the predicted impedance curve of the proposed method maintains a better correlation with the true impedance curve.
基金Supported by National Natural Science Foundation of China(Grant Nos.U1564201,61573171,61403172,51305167)China Postdoctoral Science Foundation(Grant Nos.2015T80511,2014M561592)+3 种基金Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20140555)Six Talent Peaks Project of Jiangsu Province,China(Grant Nos.2015-JXQC-012,2014-DZXX-040)Jiangsu Postdoctoral Science Foundation,China(Grant No.1402097C)Jiangsu University Scientific Research Foundation for Senior Professionals,China(Grant No.14JDG028)
文摘Traditional vehicle detection algorithms use traverse search based vehicle candidate generation and hand crafted based classifier training for vehicle candidate verification.These types of methods generally have high processing times and low vehicle detection performance.To address this issue,a visual saliency and deep sparse convolution hierarchical model based vehicle detection algorithm is proposed.A visual saliency calculation is firstly used to generate a small vehicle candidate area.The vehicle candidate sub images are then loaded into a sparse deep convolution hierarchical model with an SVM-based classifier to perform the final detection.The experimental results demonstrate that the proposed method is with 94.81% correct rate and 0.78% false detection rate on the existing datasets and the real road pictures captured by our group,which outperforms the existing state-of-the-art algorithms.More importantly,high discriminative multi-scale features are generated by deep sparse convolution network which has broad application prospects in target recognition in the field of intelligent vehicle.