期刊文献+
共找到335篇文章
< 1 2 17 >
每页显示 20 50 100
Parameter Self - Learning of Generalized Predictive Control Using BP Neural Network
1
作者 陈增强 袁著祉 王群仙 《Journal of China Textile University(English Edition)》 EI CAS 2000年第3期54-56,共3页
This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorith... This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorithm was used for the training of the linking-weights of the neural network.Hence it gets rid of the difficulty of choosing these tuning-knobs manually and provides easier condition for the wide applications of GPC on industrial plants.Simulation results illustrated the effectiveness of the method. 展开更多
关键词 generalized PREDICTIVE CONTROL SELF - tuning CONTROL SELF - learning CONTROL neural networks bp algorithm .
下载PDF
Sub-pixel mapping method based on BP neural network 被引量:1
2
作者 李娇 王立国 +1 位作者 张晔 谷延锋 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第2期279-283,共5页
A new sub-pixel mapping method based on BP neural network is proposed in order to determine the spatial distribution of class components in each mixed pixel.The network was used to train a model that describes the rel... A new sub-pixel mapping method based on BP neural network is proposed in order to determine the spatial distribution of class components in each mixed pixel.The network was used to train a model that describes the relationship between spatial distribution of target components in mixed pixel and its neighboring information.Then the sub-pixel scaled target could be predicted by the trained model.In order to improve the performance of BP network,BP learning algorithm with momentum was employed.The experiments were conducted both on synthetic images and on hyperspectral imagery(HSI).The results prove that this method is capable of estimating land covers fairly accurately and has a great superiority over some other sub-pixel mapping methods in terms of computational complexity. 展开更多
关键词 sub-pixel mapping bp neural network bp learning algorithm with momentum
下载PDF
An Optimized Convolutional Neural Network Architecture Based on Evolutionary Ensemble Learning
3
作者 Qasim M.Zainel Murad B.K.horsheed +1 位作者 Saad Darwish Amr A.Ahmed 《Computers, Materials & Continua》 SCIE EI 2021年第12期3813-3828,共16页
Convolutional Neural Networks(CNNs)models succeed in vast domains.CNNs are available in a variety of topologies and sizes.The challenge in this area is to develop the optimal CNN architecture for a particular issue in... Convolutional Neural Networks(CNNs)models succeed in vast domains.CNNs are available in a variety of topologies and sizes.The challenge in this area is to develop the optimal CNN architecture for a particular issue in order to achieve high results by using minimal computational resources to train the architecture.Our proposed framework to automated design is aimed at resolving this problem.The proposed framework is focused on a genetic algorithm that develops a population of CNN models in order to find the architecture that is the best fit.In comparison to the co-authored work,our proposed framework is concerned with creating lightweight architectures with a limited number of parameters while retaining a high degree of validity accuracy utilizing an ensemble learning technique.This architecture is intended to operate on low-resource machines,rendering it ideal for implementation in a number of environments.Four common benchmark image datasets are used to test the proposed framework,and it is compared to peer competitors’work utilizing a range of parameters,including accuracy,the number of model parameters used,the number of GPUs used,and the number of GPU days needed to complete the method.Our experimental findings demonstrated a significant advantage in terms of GPU days,accuracy,and the number of parameters in the discovered model. 展开更多
关键词 Convolutional neural networks genetic algorithm automatic model design ensemble learning
下载PDF
A Modified Algorithm for Feedforward Neural Networks
4
作者 夏战国 管红杰 +1 位作者 李政伟 孟斌 《Journal of China University of Mining and Technology》 2002年第1期103-107,共5页
As a most popular learning algorithm for the feedforward neural networks, the classic BP algorithm has its many shortages. To overcome some of the shortages, a modified learning algorithm is proposed in the article. A... As a most popular learning algorithm for the feedforward neural networks, the classic BP algorithm has its many shortages. To overcome some of the shortages, a modified learning algorithm is proposed in the article. And the simulation result illustrate the modified algorithm is more effective and practicable. 展开更多
关键词 feedforward neural networks bp learning algorithm network complexity learning step size
下载PDF
A novel compensation-based recurrent fuzzy neural network and its learning algorithm 被引量:6
5
作者 WU Bo WU Ke LU JianHong 《Science in China(Series F)》 2009年第1期41-51,共11页
Based on detailed study on several kinds of fuzzy neural networks, we propose a novel compensationbased recurrent fuzzy neural network (CRFNN) by adding recurrent element and compensatory element to the conventional... Based on detailed study on several kinds of fuzzy neural networks, we propose a novel compensationbased recurrent fuzzy neural network (CRFNN) by adding recurrent element and compensatory element to the conventional fuzzy neural network. Then, we propose a sequential learning method for the structure identification of the CRFNN in order to confirm the fuzzy rules and their correlative parameters effectively. Furthermore, we improve the BP algorithm based on the characteristics of the proposed CRFNN to train the network. By modeling the typical nonlinear systems, we draw the conclusion that the proposed CRFNN has excellent dynamic response and strong learning ability. 展开更多
关键词 compensation-based recurrent fuzzy neural network sequential learning method improved bp algorithm nonlinear system
原文传递
Memetic algorithms-based neural network learning for basic oxygen furnace endpoint prediction
6
作者 Peng CHEN Yong-zai LU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第11期841-848,共8页
Based on the critical position of the endpoint quality prediction for basic oxygen furnaces (BOFs) in steelmaking, and the latest results in computational intelligence (C1), this paper deals with the development ... Based on the critical position of the endpoint quality prediction for basic oxygen furnaces (BOFs) in steelmaking, and the latest results in computational intelligence (C1), this paper deals with the development of a novel memetic algorithm (MA) for neural network (NN) lcarnmg. Included in this is the integration of extremal optimization (EO) and Levenberg-Marquardt (LM) pradicnt search, and its application in BOF endpoint quality prediction. The fundamental analysis reveals that the proposed EO-LM algorithm may provide superior performance in generalization, computation efficiency, and avoid local minima, compared to traditional NN learning methods. Experimental results with production-scale BOF data show that the proposed method can effectively improve the NN model for BOF endpoint quality prediction. 展开更多
关键词 Memetic algorithm (MA) neural network (NN) learning Back propagation bp Extremal optimization (EO) gevenberg-Marquardt (LM) gradient search Basic oxygen furnace (BOF)
原文传递
Artificial Neural Networks Model of Evaluating the Schemes of Mine Design 被引量:1
7
作者 LU Zong\|hua,\ YAO Lai\|chang Shandong Institute of Mining & Technology, Tai′an 271019, China 《Systems Science and Systems Engineering》 CSCD 2000年第2期216-221,共6页
This paper is about the application of ANN (artificial neural networks) theory in evaluation of mine design schemes and a quantified evaluation method based on a three\|layer neural network is given. It studies the st... This paper is about the application of ANN (artificial neural networks) theory in evaluation of mine design schemes and a quantified evaluation method based on a three\|layer neural network is given. It studies the structure of the three\|layer neural network, its learning process, its operating algorithm to realize the evaluation of mine design schemes in a computer and a practical example is also involved in it. 展开更多
关键词 artificial neural network mine design scheme bp algorithm
原文传递
基于粒子群优化BP神经网络的中空夹层钢管混凝土柱轴压承载力研究
8
作者 赵均海 华林炜 王昱 《建筑钢结构进展》 CSCD 北大核心 2024年第9期45-52,共8页
圆中空夹层钢管混凝土(concrete filled double-skin steel tube,CFDST)柱因其独特的结构形式与优异的力学性能,已成为现代工程结构中的主要受力构件。然而外钢管、内钢管与核心混凝土之间的相互约束作用导致其受力比较复杂。为此,采用P... 圆中空夹层钢管混凝土(concrete filled double-skin steel tube,CFDST)柱因其独特的结构形式与优异的力学性能,已成为现代工程结构中的主要受力构件。然而外钢管、内钢管与核心混凝土之间的相互约束作用导致其受力比较复杂。为此,采用PSO-BP混合神经网络算法对圆CFDST柱的轴压承载力进行了研究。收集了167组数据建立数据库,并选取8种影响因素作为输入层参数,轴压承载力作为输出层参数,分析了传统BP神经网络模型所存在的缺陷,建立了PSO-BP神经网络模型。此外,将机器学习模型与3种规范的结果进行比较,结果表明机器学习模型的精度比3种规范的精度更高。相较于BP神经网络模型,PSO-BP神经网络模型具有更好的预测能力,更有助于预测CFDST柱的轴压承载力,对工程上研究CFDST柱的力学性能有着重要意义。 展开更多
关键词 bp神经网络 粒子群优化算法 中空夹层钢管混凝土柱 轴压承载力 机器学习模型
下载PDF
A Second Order Training Algorithm for Multilayer Feedforward Neural Networks
9
作者 谭营 何振亚 邓超 《Journal of Southeast University(English Edition)》 EI CAS 1997年第1期32-36,共5页
ASecondOrderTrainingAlgorithmforMultilayerFeedforwardNeuralNetworksTanYing(谭营)HeZhenya(何振亚)(DepartmentofRad... ASecondOrderTrainingAlgorithmforMultilayerFeedforwardNeuralNetworksTanYing(谭营)HeZhenya(何振亚)(DepartmentofRadioEngineering,Sou... 展开更多
关键词 MULTILAYER FEEDFORWARD neural networks SECOND order TRAINING algorithm bp algorithm learning factors XOR problem
下载PDF
ANN Model and Learning Algorithm in Fault Diagnosis for FMS
10
作者 史天运 王信义 +1 位作者 张之敬 朱小燕 《Journal of Beijing Institute of Technology》 EI CAS 1997年第4期45-53,共9页
The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network st... The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network structure optimization were presented for training this model ANN(artificial neural network)fault diagnosis model for the robot in FMS was made by the new algorithm The result is superior to the rtaditional algorithm 展开更多
关键词 fault diagnosis for FMS artificial neural network(ANN) improved bp algorithm optimization genetic algorithm learning speed
下载PDF
基于Qt的BP神经网络演示软件设计
11
作者 朱明哲 蒋培培 王随 《无线互联科技》 2024年第6期71-74,共4页
BP(Back Propagation)神经网络算法是一种典型的神经网络算法,具有广泛的应用。为了直观地显示该算法训练和验证数据的完整流程,文章设计了一个基于国产化平台Qt的BP神经网络演示软件,使用Qt自带的图形化控件来实现算法的结果演示。文... BP(Back Propagation)神经网络算法是一种典型的神经网络算法,具有广泛的应用。为了直观地显示该算法训练和验证数据的完整流程,文章设计了一个基于国产化平台Qt的BP神经网络演示软件,使用Qt自带的图形化控件来实现算法的结果演示。文章首先介绍了BP神经网络的基本原理、公式推导和工作流程,其次使用Qt实现了该算法并绘制了图形化界面,最后使用该算法对经典的鸢尾花数据集进行训练和验证,并将验证结果在界面上显示。实验验证,该软件能够支持BP神经网络算法的算法运行与结果显示,满足软件设计的相关要求。 展开更多
关键词 QT bp神经网络 软件设计
下载PDF
Optimization Design of Fairings for VIV Suppression Based on Data-Driven Models and Genetic Algorithm 被引量:1
12
作者 LIU Xiu-quan JIANG Yong +3 位作者 LIU Fu-lai LIU Zhao-wei CHANG Yuan-jiang CHEN Guo-ming 《China Ocean Engineering》 SCIE EI CSCD 2021年第1期153-158,共6页
Vortex induced vibration(VIV)is a challenge in ocean engineering.Several devices including fairings have been designed to suppress VIV.However,how to optimize the design of suppression devices is still a problem to be... Vortex induced vibration(VIV)is a challenge in ocean engineering.Several devices including fairings have been designed to suppress VIV.However,how to optimize the design of suppression devices is still a problem to be solved.In this paper,an optimization design methodology is presented based on data-driven models and genetic algorithm(GA).Data-driven models are introduced to substitute complex physics-based equations.GA is used to rapidly search for the optimal suppression device from all possible solutions.Taking fairings as example,VIV response database for different fairings is established based on parameterized models in which model sections of fairings are controlled by several control points and Bezier curves.Then a data-driven model,which can predict the VIV response of fairings with different sections accurately and efficiently,is trained through BP neural network.Finally,a comprehensive optimization method and process is proposed based on GA and the data-driven model.The proposed method is demonstrated by its application to a case.It turns out that the proposed method can perform the optimization design of fairings effectively.VIV can be reduced obviously through the optimization design. 展开更多
关键词 optimization design vortex induced vibration suppression devices data-driven models bp neural network genetic algorithm
下载PDF
基于动量自适应学习率PSO-BP神经网络的钻速预测模型研究 被引量:7
13
作者 刘伟吉 冯嘉豪 +1 位作者 祝效华 李枝林 《科学技术与工程》 北大核心 2023年第24期10264-10272,共9页
机械钻速(rate of penetration,ROP)是钻井作业优化和减少成本的关键因素,钻井时有效地预测ROP是提升钻进效率的关键。由于井下钻进时复杂多变的情况和地层的非均质性,通过传统的ROP方程和回归分析方法来预测钻速受到了一定的限制。为... 机械钻速(rate of penetration,ROP)是钻井作业优化和减少成本的关键因素,钻井时有效地预测ROP是提升钻进效率的关键。由于井下钻进时复杂多变的情况和地层的非均质性,通过传统的ROP方程和回归分析方法来预测钻速受到了一定的限制。为了实现对钻速的高精度预测,对现有BP (back propagation)神经网络进行优化,提出了一种新的神经网络模型,即动态自适应学习率的粒子群优化BP神经网络,利用录井数据建立目标井预测模型来对钻速进行预测。在训练过程中对BP神经网络进行优化,利用启发式算法,即附加动量法和自适应学习率,将两种方法结合起来形成动态自适应学习率的BP改进算法,提高了BP神经网络的训练速度和拟合精度,获得了更好的泛化性能。将BP神经网络与遗传优化算法(genetic algorithm,GA)和粒子群优化算法(particle swarm optimization,PSO)结合,得到优化后的动态自适应学习率BP神经网络。研究利用XX8-1-2井的录井数据进行实验,对比BP神经网络、PSO-BP神经网络、GA-BP神经网络3种不同的改进后神经网络的预测结果。实验结果表明:优化后的PSO-BP神经网络的预测性能最好,具有更高的效率和可靠性,能够有效的利用工程数据,在有一定数据采集量的区域提供较为准确的ROP预测。 展开更多
关键词 钻速(ROP)预测 bp神经网络 附加动量法 自适应学习率 遗传算法(GA) 粒子群算法(PSO)
下载PDF
Finding roots of arbitrary high order polynomials based on neural network recursive partitioning method
14
作者 HUANGDeshuang CHIZheru 《Science in China(Series F)》 2004年第2期232-245,共14页
This paper proposes a novel recursive partitioning method based on constrained learning neural networks to find an arbitrary number (less than the order of the polynomial) of (real or complex) roots of arbitrary polyn... This paper proposes a novel recursive partitioning method based on constrained learning neural networks to find an arbitrary number (less than the order of the polynomial) of (real or complex) roots of arbitrary polynomials. Moreover, this paper also gives a BP network constrained learning algorithm (CLA) used in root-finders based on the constrained relations between the roots and the coefficients of polynomials. At the same time, an adaptive selection method for the parameter d P with the CLA is also given. The experimental results demonstrate that this method can more rapidly and effectively obtain the roots of arbitrary high order polynomials with higher precision than traditional root-finding approaches. 展开更多
关键词 recursive partitioning method bp neural networks constrained learning algorithm Laguerre method Muller method Jenkins-Traub method adaptive parameter selection high order arbitrary polyno-mials real or complex roots.
原文传递
多策略SMA-BP神经网络的空气质量指数预测 被引量:2
15
作者 文昌俊 陈洋洋 +1 位作者 何永豪 陈凡 《电子测量技术》 北大核心 2023年第22期78-86,共9页
针对BP神经网络预测精度不佳、预测结果不稳定的问题,提出改进黏菌算法(ISMA)优化BP神经网络的预测模型,引入Tent混沌映射克服初始种群分布不均的缺点,针对黏菌算法位置更新的随机性和后期容易陷入局部最优等问题引入领导者策略和莱维... 针对BP神经网络预测精度不佳、预测结果不稳定的问题,提出改进黏菌算法(ISMA)优化BP神经网络的预测模型,引入Tent混沌映射克服初始种群分布不均的缺点,针对黏菌算法位置更新的随机性和后期容易陷入局部最优等问题引入领导者策略和莱维飞行策略,利用自适应反向学习策略扩大搜索空间并用23组基准函数加以测试。随后利用ISMA算法优化BP网络模型的初始权值和阈值,构建ISMA-BP空气质量指数预测模型,最后将收集到的779组空气质量指数数据代入预测模型中进行测试分析,实验结果表明,与BP神经网络模型、GWO-BP、SMA-BP模型相比,ISMA-BP模型对AQI的预测具有更高的精度,其预测的均方误差为3.8402,平均绝对误差分别为1.5078。 展开更多
关键词 黏菌算法 Tent混沌映射 反向学习策略 bp神经网络 灰色关联 度空气质量预测
下载PDF
基于SVR和BP神经网络算法通过IOL Master 700测量数据来预测白内障术后CW弦
16
作者 李晨 《国际眼科杂志》 CAS 北大核心 2023年第12期2081-2086,共6页
目的:通过IOL Master 700观察白内障手术前后Chang-Warning弦(CW弦)的变化,并利用术前数据和人工智能预测模型预测术后CW弦。方法:研究对象为304例白内障患者,分析其术前及术后的IOL Master 700测量数据,包括散光矢量值、角膜平均曲率... 目的:通过IOL Master 700观察白内障手术前后Chang-Warning弦(CW弦)的变化,并利用术前数据和人工智能预测模型预测术后CW弦。方法:研究对象为304例白内障患者,分析其术前及术后的IOL Master 700测量数据,包括散光矢量值、角膜平均曲率、眼轴长度、前房深度、晶状体厚度、角膜中央厚度、白到白距离、浦肯野反射Ⅰ像相对于角膜中心的位置和瞳孔中心的位置、CW弦等。研究建立了基于SVR算法和BP神经网络算法的预测模型,通过术前CW弦及眼部生物参数来预测术后CW弦。结果:相比于白内障手术前,手术后左、右眼CW弦X分量向颞侧有轻微偏移,Y分量变化不大。使用术前CW弦和其他术前眼部生物参数作为输入数据,相比于BP神经网络,SVR模型能够更准确的对术后CW弦的X分量和Y分量做出预测。结论:CW弦可以用各种生物测量仪器、角膜地形图仪器或断层摄像仪器在同轴固定光下直接测量。使用SVR算法能够在白内障手术前较精准的对术后CW弦进行预测。 展开更多
关键词 alpha角 KAPPA角 Chang-Waring弦(CW弦) 深度学习 白内障 SVR算法 bp神经网络算法 IOL Master 700
下载PDF
改进思维进化算法优化BP神经网络的瓦斯涌出量预测研究
17
作者 赵焕平 《南阳理工学院学报》 2023年第4期35-39,共5页
为了保证煤矿安全开采,并提高煤矿瓦斯涌出量的预测精度,提出了改进思维进化算法优化BP神经网络的模型预测新方法。在思维进化算法中加入精英反向学习策略增加算法的全局搜索能力,在趋同操作中引入粒子群算法避免重复搜索,以此实现对BP... 为了保证煤矿安全开采,并提高煤矿瓦斯涌出量的预测精度,提出了改进思维进化算法优化BP神经网络的模型预测新方法。在思维进化算法中加入精英反向学习策略增加算法的全局搜索能力,在趋同操作中引入粒子群算法避免重复搜索,以此实现对BP神经网络的初始权值和阈值的全局寻优,并通过矿井监测到的各项历史数据进行验证。结果表明:与BP神经网络模型和MEA-BP神经网络模型相比较,该模型的预测精度更高,泛化能力更强。该模型的平均相对变动值为0.00116,平均相对误差为0.81%,均方根误差为0.0576,有效提高了对瓦斯涌出量的预测精度,提升了煤矿安全生产技术。 展开更多
关键词 瓦斯涌出量 思维进化算法 精英反向学习 粒子群算法 bp神经网络
下载PDF
基于改进BP神经网络的M-learning学习质量评价 被引量:2
18
作者 唐立 李六杏 《淮阴师范学院学报(自然科学版)》 CAS 2019年第1期35-40,共6页
传统的BP神经网络算法在寻优过程中常陷入局部极小值而无法得到全局最优解,同时在大数据量训练时,运算时耗大,效率低.为了避免这些缺点,提出了并行GA-Adaboost-BP神经网络算法,用GA算法优化BP神经网络权值,避免陷入局部极小值.运用并行A... 传统的BP神经网络算法在寻优过程中常陷入局部极小值而无法得到全局最优解,同时在大数据量训练时,运算时耗大,效率低.为了避免这些缺点,提出了并行GA-Adaboost-BP神经网络算法,用GA算法优化BP神经网络权值,避免陷入局部极小值.运用并行Adaboost算法,将大数据量分成若干个小数据量集,由Adaboost算法组合多个小数据集BP神经网络的输出,构建一个强预测器,这种分布式运算提高了大数据量训练效率.实验证明,用改进BP神经网络算法对大数据量M-learning学习质量评价进行预测,其精确度较高,预测稳定性较好,运算效率得到提高. 展开更多
关键词 bp神经网络算法 GA算法 ADABOOST算法 M-learning
下载PDF
基于Sine-SSA-BP神经网络模型的风机叶根载荷预测 被引量:2
19
作者 张良 何山 艾纯玉 《可再生能源》 CAS CSCD 北大核心 2023年第10期1322-1328,共7页
针对风机叶根载荷影响因素复杂、计算量大、非线性和强耦合,采用传统数理分析方法难以建模的问题。文章首先分析了叶根载荷的主要影响因素,并结合多元回归模型建立载荷预测模型;然后采用Bladed对2MW风机实验所得仿真数据划分训练数据集... 针对风机叶根载荷影响因素复杂、计算量大、非线性和强耦合,采用传统数理分析方法难以建模的问题。文章首先分析了叶根载荷的主要影响因素,并结合多元回归模型建立载荷预测模型;然后采用Bladed对2MW风机实验所得仿真数据划分训练数据集和测试数据集,并利用所得数据对Sine混沌映射改进麻雀算法优化的BP神经网络(Sine-SSA-BP)预测模型进行训练,使用训练后的模型进行叶根载荷预测;最后将预测结果与测试数据、BP神经网络预测模型和极限学习机(ELM)预测模型的预测结果进行对比分析。结果表明,Sine-SSA-BP预测模型性能更佳,预测精度更高,验证了所提方法的可行性和有效性。 展开更多
关键词 载荷预测 极限学习机 bp神经网络 麻雀算法 混沌映射
下载PDF
基于BAS-BP-Bagging模型的光纤陀螺温度补偿 被引量:3
20
作者 王开 仇海涛 石海洋 《半导体光电》 CAS 北大核心 2023年第4期519-524,共6页
为提高光纤陀螺的输出精度,以天牛须搜索算法(BAS)优化后的BP神经网络模型为基学习器,采用Bagging并行集成学习算法建立了BAS-BP-Bagging温度补偿模型,并对某型号光纤陀螺进行了温度补偿实验。实验结果表明,在-40~+60℃温度变化环境下,... 为提高光纤陀螺的输出精度,以天牛须搜索算法(BAS)优化后的BP神经网络模型为基学习器,采用Bagging并行集成学习算法建立了BAS-BP-Bagging温度补偿模型,并对某型号光纤陀螺进行了温度补偿实验。实验结果表明,在-40~+60℃温度变化环境下,该方法补偿后的光纤陀螺温度漂移相较于补偿前减小了近80%,相较于多项式补偿算法减小了55%,相较于BP神经网络补偿算法减小了30%左右。同时该模型在对新鲜样本的补偿过程中表现出了较为优越的泛化性能。 展开更多
关键词 光纤陀螺 温度补偿 bp神经网络 天牛须搜索算法 集成学习
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部