With the unique erggdicity, i rregularity, and.special ability to avoid being trapped in local optima, chaos optimization has been a novel global optimization technique and has attracted considerable attention for a...With the unique erggdicity, i rregularity, and.special ability to avoid being trapped in local optima, chaos optimization has been a novel global optimization technique and has attracted considerable attention for application in various fields, such as nonlinear programming problems. In this article, a novel neural network nonlinear predic-tive control (NNPC) strategy baseed on the new Tent-map chaos optimization algorithm (TCOA) is presented. Thefeedforward neural network'is used as the multi-step predictive model. In addition, the TCOA is applied to perform the nonlinear rolling optimization to enhance the convergence and accuracy in the NNPC. Simulation on a labora-tory-scale liquid-level system is given to illustrate the effectiveness of the proposed method.展开更多
In the present work,a study is made to investigate the effects of process parameters,namely,laser power,scanning speed,hatch spacing, layer thickness and powder temperature, on the tensile strength for selective laser...In the present work,a study is made to investigate the effects of process parameters,namely,laser power,scanning speed,hatch spacing, layer thickness and powder temperature, on the tensile strength for selective laser sintering( SLS) of polystyrene( PS). Artificial neural network( ANN) methodology is employed to develop mathematical relationships between the process parameters and the output variable of the sintering strength. Experimental data are used to train and test the network. The present neural network model is applied to predicting the experimental outcome as a function of input parameters within a specified range. Predicted sintering strength using the trained back propagation( BP) network model showed quite a good agreement with measured ones. The results showed that the networks had high processing speed,the abilities of error-correcting and self-organizing. ANN models had favorable performance and proved to be an applicable tool for predicting sintering strength SLS of PS.展开更多
The offshore jacket platform is a complex and time-varying nonlinear system, which can be excited of harmful vibration by external loads. It is difficult to obtain an ideal control performance for passive control meth...The offshore jacket platform is a complex and time-varying nonlinear system, which can be excited of harmful vibration by external loads. It is difficult to obtain an ideal control performance for passive control methods or traditional active control methods based on accurate mathematic model. In this paper, an adaptive inverse control method is proposed on the basis of novel rough neural networks (RNN) to control the harmful vibration of the offshore jacket platform, and the offshore jacket platform model is established by dynamic stiffness matrix (DSM) method. Benefited from the nonlinear processing ability of the neural networks and data interpretation ability of the rough set theory, RNN is utilized to identify the predictive inverse model of the offshore jacket platform system. Then the identified model is used as the adaptive predictive inverse controller to control the harmful vibration caused by wave and wind loads, and to deal with the delay problem caused by signal transmission in the control process. The numerical results show that the constructed novel RNN has advantages such as clear structure, fast training speed and strong error-tolerance ability, and the proposed method based on RNN can effectively control the harmful vibration of the offshore jacket platform.展开更多
After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model erro...After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model errors and accumulated errors produced in the recursive process. Characterized by predictive control, this method can achieve a good control accuracy and has good robustness. A simulation study shows that this control algorithm is very effective.展开更多
Human brain is hypothesized to store a geometry and dynamic model of the limb.A multilayer perceptron (or MLP) network is used to stand for the model.In this paper the human elbow joint rhythmic movement is simulated ...Human brain is hypothesized to store a geometry and dynamic model of the limb.A multilayer perceptron (or MLP) network is used to stand for the model.In this paper the human elbow joint rhythmic movement is simulated in three cases:1)Parameters of the MLP,the limb geometry and dynamic model match completely,2)Parameters mismatch between them,and 3)Disturbance exists.The results show that parameters mismatch is the main error source,which causes the elbow joint movement to be aberrant.From this we can infer that movement study is a process in which the internal model is updated continuously to match the geometry and dynamic model of limb.展开更多
A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence da...A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence data of input and output.Output predictions are obtained by recursively mapping the NN model.The error rectification term is introduced into a performance function that is directly optimized while on line control so that it overcomes influences of the mismatched model and disturbances,etc.Simulations show the system has good dynamic responses and robustness.展开更多
Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was...Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was proposed for modeling and predicting the behavior of the under-controller nonlinear system in a moving forward window.In order to improve the convergence of the parameters of the HCDRNN to improve system’s modeling,the extent of chaos is adjusted using a logistic map in the hidden layer.A novel NMPC based on the HCDRNN array(HCDRNN-NMPC)was proposed that the control signal with the help of an improved gradient descent method was obtained.The controller was used to control a continuous stirred tank reactor(CSTR)with hard-nonlinearities and input constraints,in the presence of uncertainties including external disturbance.The results of the simulations show the superior performance of the proposed method in trajectory tracking and disturbance rejection.Parameter convergence and neglectable prediction error of the neural network(NN),guaranteed stability and high tracking performance are the most significant advantages of the proposed scheme.展开更多
Tax is very important to the whole country, so a scientific tax predictive model is needed. This paper introduces the theory of the cloud model. On this basis, it presents a cloud neural network, and analyzes the main...Tax is very important to the whole country, so a scientific tax predictive model is needed. This paper introduces the theory of the cloud model. On this basis, it presents a cloud neural network, and analyzes the main factors which influence the tax revenue. Then if proposes a tax predictive model based on the cloud neural network. The model combines the strongpoints of the cloud model and the neural network. The experiment and simulation results show the effectiveness of the algorithm in this paper.展开更多
:Machine Learning(ML)algorithms have been widely used for financial time series prediction and trading through bots.In this work,we propose a Predictive Error Compensated Wavelet Neural Network(PEC-WNN)ML model that i...:Machine Learning(ML)algorithms have been widely used for financial time series prediction and trading through bots.In this work,we propose a Predictive Error Compensated Wavelet Neural Network(PEC-WNN)ML model that improves the prediction of next day closing prices.In the proposed model we use multiple neural networks where the first one uses the closing stock prices from multiple-scale time-domain inputs.An additional network is used for error estimation to compensate and reduce the prediction error of the main network instead of using recurrence.The performance of the proposed model is evaluated using six different stock data samples in the New York stock exchange.The results have demonstrated significant improvement in forecasting accuracy in all cases when the second network is used in accordance with the first one by adding the outputs.The RMSE error is 33%improved when the proposed PEC-WNN model is used compared to the Long ShortTerm Memory(LSTM)model.Furthermore,through the analysis of training mechanisms,we found that using the updated training the performance of the proposed model is improved.The contribution of this study is the applicability of simultaneously different time frames as inputs.Cascading the predictive error compensation not only reduces the error rate but also helps in avoiding overfitting problems.展开更多
An approach of adaptive predictive control with a new structure and a fast algorithm of neural network (NN) is proposed. NN modeling and optimal predictive control are combined to achieve both accuracy and good contro...An approach of adaptive predictive control with a new structure and a fast algorithm of neural network (NN) is proposed. NN modeling and optimal predictive control are combined to achieve both accuracy and good control performance. The output of nonlinear network model is adopted as a measured disturbance that is therefore weakened in predictive feed-forward control. Simulation and practical application show the effectiveness of control by the proposed approach.展开更多
A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is ...A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is investigated. The stability of the closed loop model predictive control system is analyzed based on Lyapunov theory to obtain the sufficient condition for the asymptotical stability of the neural predictive control system. A simulation was carried out for an exothermic first-order reaction in a continuous stirred tank reactor.It is demonstrated that the proposed control strategy is applicable to some of nonlinear systems.展开更多
Laser surface hardening is a very promising hardening process for ferrous alloys where transformations occur during cooling after laser heating in the solid state. The characteristics of the hardened surface depend on...Laser surface hardening is a very promising hardening process for ferrous alloys where transformations occur during cooling after laser heating in the solid state. The characteristics of the hardened surface depend on the physicochemical properties of the material as well as the heating system parameters. To exploit the benefits presented by the laser hardening process, it is necessary to develop an integrated strategy to control the process parameters in order to produce desired hardened surface attributes without being forced to use the traditional and fastidious trial and error procedures. This study presents a comprehensive modelling approach for predicting the hardened surface physical and geometrical attributes. The laser surface transformation hardening of cylindrical AISI 4340 steel workpieces is modeled using the conventional regression equation method as well as artificial neural network method. The process parameters included in the study are laser power, beam scanning speed, and the workpiece rotational speed. The upper and the lower limits for each parameter are chosen considering the start of the transformation hardening and the maximum hardened zone without surface melting. The resulting models are able to predict the depths representing the maximum hardness zone, the hardness drop zone, and the overheated zone without martensite transformation. Because of its ability to model highly nonlinear problems, the ANN based model presents the best modelling results and can predict the hardness profile with good accuracy.展开更多
In industrial drives, electric motors are extensively utilized to impart motion control and induction motors are the most familiar drive at present due to its extensive performance characteristic similar with that of ...In industrial drives, electric motors are extensively utilized to impart motion control and induction motors are the most familiar drive at present due to its extensive performance characteristic similar with that of DC drives. Precise control of drives is the main attribute in industries to optimize the performance and to increase its production rate. In motion control, the major considerations are the torque and speed ripples. Design of controllers has become increasingly complex to such systems for better management of energy and raw materials to attain optimal performance. Meager parameter appraisal results are unsuitable, leading to unstable operation. The rapid intensification of digital computer revolutionizes to practice precise control and allows implementation of advanced control strategy to extremely multifaceted systems. To solve complex control problems, model predictive control is an authoritative scheme, which exploits an explicit model of the process to be controlled. This paper presents a predictive control strategy by a neural network predictive controller based single phase induction motor drive to minimize the speed and torque ripples. The proposed method exhibits better performance than the conventional controller and validity of the proposed method is verified by the simulation results using MATLAB software.展开更多
A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time...A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time and increase the forecasting accuracy of the network model. This model has been experimented in the sintering process, and the production cost, the energy consumption, the quality (revolving intensity), and the output are considered at the same time. Moreover, the relation between some factors and the multi-objectives has been analyzed, and the results are consistent with the process. Different objectives are emphasized at different practical periods, and this can provide a theoretical basis for the manager.展开更多
Deep learning techniques,particularly convolutional neural networks(CNNs),have exhibited remarkable performance in solving visionrelated problems,especially in unpredictable,dynamic,and challenging environments.In aut...Deep learning techniques,particularly convolutional neural networks(CNNs),have exhibited remarkable performance in solving visionrelated problems,especially in unpredictable,dynamic,and challenging environments.In autonomous vehicles,imitation-learning-based steering angle prediction is viable due to the visual imagery comprehension of CNNs.In this regard,globally,researchers are currently focusing on the architectural design and optimization of the hyperparameters of CNNs to achieve the best results.Literature has proven the superiority of metaheuristic algorithms over the manual-tuning of CNNs.However,to the best of our knowledge,these techniques are yet to be applied to address the problem of imitationlearning-based steering angle prediction.Thus,in this study,we examine the application of the bat algorithm and particle swarm optimization algorithm for the optimization of the CNN model and its hyperparameters,which are employed to solve the steering angle prediction problem.To validate the performance of each hyperparameters’set and architectural parameters’set,we utilized the Udacity steering angle dataset and obtained the best results at the following hyperparameter set:optimizer,Adagrad;learning rate,0.0052;and nonlinear activation function,exponential linear unit.As per our findings,we determined that the deep learning models show better results but require more training epochs and time as compared to shallower ones.Results show the superiority of our approach in optimizing CNNs through metaheuristic algorithms as compared with the manual-tuning approach.Infield testing was also performed using the model trained with the optimal architecture,which we developed using our approach.展开更多
A soft sensing method of burning through point (BTP) was described and a new predictive parameter—the mathematics inflexion point of waste gas temperature curve in the middle of the strand was proposed. The artificia...A soft sensing method of burning through point (BTP) was described and a new predictive parameter—the mathematics inflexion point of waste gas temperature curve in the middle of the strand was proposed. The artificial neural network was used in predicting BTP, modification on backpropagation algorithm was made in order to improve the convergence and self organize the hidden layer neurons. The adaptive prediction system developed on these techniques shows its characters such as fast, accuracy, less dependence on production data. The prediction of BTP can be used as operation guidance or control parameter.[展开更多
This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorith...This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorithm was used for the training of the linking-weights of the neural network.Hence it gets rid of the difficulty of choosing these tuning-knobs manually and provides easier condition for the wide applications of GPC on industrial plants.Simulation results illustrated the effectiveness of the method.展开更多
The objective of this study is to develop an effective approach for product quality prediction in Computer Numerical Control turning of cantilever bars. A systematic predictive modelling procedure based on experimenta...The objective of this study is to develop an effective approach for product quality prediction in Computer Numerical Control turning of cantilever bars. A systematic predictive modelling procedure based on experimental investigations, neural network modelling and various statistical analysis tools is designed to produce the most accurate, practical and cost-effective prediction model. The modeling procedure begins by exploring the relationships between cutting parameters known to have an influence on quality characteristics of machined parts, such as dimensional errors, form errors and surface roughness, as well as their sensitivity to the process conditions. Based on these explorations and using numerous statistical tools, the most relevant variables to include in the prediction model are identified and fused using several artificial neural network architectures. An application on CNC turning of cantilever bars demonstrates that the proposed modeling procedure can be effectively and advantageously applied to quality characteristics prediction due to its simplicity, accuracy and efficiency. The experimental validation reveals that the resulting prediction model can correctly predict the quality characteristics of machined parts under variable machining conditions.展开更多
We consider qualitatively robust predictive mappings of stochastic environmental models, where protection against outlier data is incorporated. We utilize digital representations of the models and deploy stochastic bi...We consider qualitatively robust predictive mappings of stochastic environmental models, where protection against outlier data is incorporated. We utilize digital representations of the models and deploy stochastic binary neural networks that are pre-trained to produce such mappings. The pre-training is implemented by a back propagating supervised learning algorithm which converges almost surely to the probabilities induced by the environment, under general ergodicity conditions.展开更多
基金Supported by the National Natural Science Foundation of China (No.60374037, No.60574036), the Program for New Century Excellent Talents in University of China (NCET), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20050055013), .and the 0pening Project Foundation of National Lab of Industrial Control Technology (No.0708008).
文摘With the unique erggdicity, i rregularity, and.special ability to avoid being trapped in local optima, chaos optimization has been a novel global optimization technique and has attracted considerable attention for application in various fields, such as nonlinear programming problems. In this article, a novel neural network nonlinear predic-tive control (NNPC) strategy baseed on the new Tent-map chaos optimization algorithm (TCOA) is presented. Thefeedforward neural network'is used as the multi-step predictive model. In addition, the TCOA is applied to perform the nonlinear rolling optimization to enhance the convergence and accuracy in the NNPC. Simulation on a labora-tory-scale liquid-level system is given to illustrate the effectiveness of the proposed method.
基金National Natural Science Foundation of China(No.51475315)Innovative Project on the Integration of Industry,Education and Research of Jiangsu Province,China(No.BY2014059-10)
文摘In the present work,a study is made to investigate the effects of process parameters,namely,laser power,scanning speed,hatch spacing, layer thickness and powder temperature, on the tensile strength for selective laser sintering( SLS) of polystyrene( PS). Artificial neural network( ANN) methodology is employed to develop mathematical relationships between the process parameters and the output variable of the sintering strength. Experimental data are used to train and test the network. The present neural network model is applied to predicting the experimental outcome as a function of input parameters within a specified range. Predicted sintering strength using the trained back propagation( BP) network model showed quite a good agreement with measured ones. The results showed that the networks had high processing speed,the abilities of error-correcting and self-organizing. ANN models had favorable performance and proved to be an applicable tool for predicting sintering strength SLS of PS.
文摘The offshore jacket platform is a complex and time-varying nonlinear system, which can be excited of harmful vibration by external loads. It is difficult to obtain an ideal control performance for passive control methods or traditional active control methods based on accurate mathematic model. In this paper, an adaptive inverse control method is proposed on the basis of novel rough neural networks (RNN) to control the harmful vibration of the offshore jacket platform, and the offshore jacket platform model is established by dynamic stiffness matrix (DSM) method. Benefited from the nonlinear processing ability of the neural networks and data interpretation ability of the rough set theory, RNN is utilized to identify the predictive inverse model of the offshore jacket platform system. Then the identified model is used as the adaptive predictive inverse controller to control the harmful vibration caused by wave and wind loads, and to deal with the delay problem caused by signal transmission in the control process. The numerical results show that the constructed novel RNN has advantages such as clear structure, fast training speed and strong error-tolerance ability, and the proposed method based on RNN can effectively control the harmful vibration of the offshore jacket platform.
基金This project was supported by the National Natural Science Foundation of China(60174021)Natural Science Foundation Key Project of Tianjin(013800711).
文摘After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model errors and accumulated errors produced in the recursive process. Characterized by predictive control, this method can achieve a good control accuracy and has good robustness. A simulation study shows that this control algorithm is very effective.
文摘Human brain is hypothesized to store a geometry and dynamic model of the limb.A multilayer perceptron (or MLP) network is used to stand for the model.In this paper the human elbow joint rhythmic movement is simulated in three cases:1)Parameters of the MLP,the limb geometry and dynamic model match completely,2)Parameters mismatch between them,and 3)Disturbance exists.The results show that parameters mismatch is the main error source,which causes the elbow joint movement to be aberrant.From this we can infer that movement study is a process in which the internal model is updated continuously to match the geometry and dynamic model of limb.
文摘A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence data of input and output.Output predictions are obtained by recursively mapping the NN model.The error rectification term is introduced into a performance function that is directly optimized while on line control so that it overcomes influences of the mismatched model and disturbances,etc.Simulations show the system has good dynamic responses and robustness.
文摘Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was proposed for modeling and predicting the behavior of the under-controller nonlinear system in a moving forward window.In order to improve the convergence of the parameters of the HCDRNN to improve system’s modeling,the extent of chaos is adjusted using a logistic map in the hidden layer.A novel NMPC based on the HCDRNN array(HCDRNN-NMPC)was proposed that the control signal with the help of an improved gradient descent method was obtained.The controller was used to control a continuous stirred tank reactor(CSTR)with hard-nonlinearities and input constraints,in the presence of uncertainties including external disturbance.The results of the simulations show the superior performance of the proposed method in trajectory tracking and disturbance rejection.Parameter convergence and neglectable prediction error of the neural network(NN),guaranteed stability and high tracking performance are the most significant advantages of the proposed scheme.
文摘Tax is very important to the whole country, so a scientific tax predictive model is needed. This paper introduces the theory of the cloud model. On this basis, it presents a cloud neural network, and analyzes the main factors which influence the tax revenue. Then if proposes a tax predictive model based on the cloud neural network. The model combines the strongpoints of the cloud model and the neural network. The experiment and simulation results show the effectiveness of the algorithm in this paper.
基金This study is based on the research project“Development of Cyberdroid based on Cognitive Intelligent system applications”(2019–2020)funded by Crypttech company(https://www.crypttech.com/en/)within the contract by ITUNOVA,Istanbul Technical University Technology Transfer Office.
文摘:Machine Learning(ML)algorithms have been widely used for financial time series prediction and trading through bots.In this work,we propose a Predictive Error Compensated Wavelet Neural Network(PEC-WNN)ML model that improves the prediction of next day closing prices.In the proposed model we use multiple neural networks where the first one uses the closing stock prices from multiple-scale time-domain inputs.An additional network is used for error estimation to compensate and reduce the prediction error of the main network instead of using recurrence.The performance of the proposed model is evaluated using six different stock data samples in the New York stock exchange.The results have demonstrated significant improvement in forecasting accuracy in all cases when the second network is used in accordance with the first one by adding the outputs.The RMSE error is 33%improved when the proposed PEC-WNN model is used compared to the Long ShortTerm Memory(LSTM)model.Furthermore,through the analysis of training mechanisms,we found that using the updated training the performance of the proposed model is improved.The contribution of this study is the applicability of simultaneously different time frames as inputs.Cascading the predictive error compensation not only reduces the error rate but also helps in avoiding overfitting problems.
基金the National Natural Science Foundation of China (No. 60075012).
文摘An approach of adaptive predictive control with a new structure and a fast algorithm of neural network (NN) is proposed. NN modeling and optimal predictive control are combined to achieve both accuracy and good control performance. The output of nonlinear network model is adopted as a measured disturbance that is therefore weakened in predictive feed-forward control. Simulation and practical application show the effectiveness of control by the proposed approach.
文摘A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is investigated. The stability of the closed loop model predictive control system is analyzed based on Lyapunov theory to obtain the sufficient condition for the asymptotical stability of the neural predictive control system. A simulation was carried out for an exothermic first-order reaction in a continuous stirred tank reactor.It is demonstrated that the proposed control strategy is applicable to some of nonlinear systems.
文摘Laser surface hardening is a very promising hardening process for ferrous alloys where transformations occur during cooling after laser heating in the solid state. The characteristics of the hardened surface depend on the physicochemical properties of the material as well as the heating system parameters. To exploit the benefits presented by the laser hardening process, it is necessary to develop an integrated strategy to control the process parameters in order to produce desired hardened surface attributes without being forced to use the traditional and fastidious trial and error procedures. This study presents a comprehensive modelling approach for predicting the hardened surface physical and geometrical attributes. The laser surface transformation hardening of cylindrical AISI 4340 steel workpieces is modeled using the conventional regression equation method as well as artificial neural network method. The process parameters included in the study are laser power, beam scanning speed, and the workpiece rotational speed. The upper and the lower limits for each parameter are chosen considering the start of the transformation hardening and the maximum hardened zone without surface melting. The resulting models are able to predict the depths representing the maximum hardness zone, the hardness drop zone, and the overheated zone without martensite transformation. Because of its ability to model highly nonlinear problems, the ANN based model presents the best modelling results and can predict the hardness profile with good accuracy.
文摘In industrial drives, electric motors are extensively utilized to impart motion control and induction motors are the most familiar drive at present due to its extensive performance characteristic similar with that of DC drives. Precise control of drives is the main attribute in industries to optimize the performance and to increase its production rate. In motion control, the major considerations are the torque and speed ripples. Design of controllers has become increasingly complex to such systems for better management of energy and raw materials to attain optimal performance. Meager parameter appraisal results are unsuitable, leading to unstable operation. The rapid intensification of digital computer revolutionizes to practice precise control and allows implementation of advanced control strategy to extremely multifaceted systems. To solve complex control problems, model predictive control is an authoritative scheme, which exploits an explicit model of the process to be controlled. This paper presents a predictive control strategy by a neural network predictive controller based single phase induction motor drive to minimize the speed and torque ripples. The proposed method exhibits better performance than the conventional controller and validity of the proposed method is verified by the simulation results using MATLAB software.
文摘A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time and increase the forecasting accuracy of the network model. This model has been experimented in the sintering process, and the production cost, the energy consumption, the quality (revolving intensity), and the output are considered at the same time. Moreover, the relation between some factors and the multi-objectives has been analyzed, and the results are consistent with the process. Different objectives are emphasized at different practical periods, and this can provide a theoretical basis for the manager.
基金The authors would like to acknowledge the support of the Deputy for Research and Innovation,Ministry of Education,Kingdom of Saudi Arabia for this research through a grant(NU/IFC/INT/01/008)under the institutional Funding Committee at Najran University,Kingdom of Saudi Arabia.
文摘Deep learning techniques,particularly convolutional neural networks(CNNs),have exhibited remarkable performance in solving visionrelated problems,especially in unpredictable,dynamic,and challenging environments.In autonomous vehicles,imitation-learning-based steering angle prediction is viable due to the visual imagery comprehension of CNNs.In this regard,globally,researchers are currently focusing on the architectural design and optimization of the hyperparameters of CNNs to achieve the best results.Literature has proven the superiority of metaheuristic algorithms over the manual-tuning of CNNs.However,to the best of our knowledge,these techniques are yet to be applied to address the problem of imitationlearning-based steering angle prediction.Thus,in this study,we examine the application of the bat algorithm and particle swarm optimization algorithm for the optimization of the CNN model and its hyperparameters,which are employed to solve the steering angle prediction problem.To validate the performance of each hyperparameters’set and architectural parameters’set,we utilized the Udacity steering angle dataset and obtained the best results at the following hyperparameter set:optimizer,Adagrad;learning rate,0.0052;and nonlinear activation function,exponential linear unit.As per our findings,we determined that the deep learning models show better results but require more training epochs and time as compared to shallower ones.Results show the superiority of our approach in optimizing CNNs through metaheuristic algorithms as compared with the manual-tuning approach.Infield testing was also performed using the model trained with the optimal architecture,which we developed using our approach.
文摘A soft sensing method of burning through point (BTP) was described and a new predictive parameter—the mathematics inflexion point of waste gas temperature curve in the middle of the strand was proposed. The artificial neural network was used in predicting BTP, modification on backpropagation algorithm was made in order to improve the convergence and self organize the hidden layer neurons. The adaptive prediction system developed on these techniques shows its characters such as fast, accuracy, less dependence on production data. The prediction of BTP can be used as operation guidance or control parameter.[
基金Supported by the National 863 CIMS Project Foundation(863-511-010)Tianjin Natural Science Foundation(983602011)Backbone Young Teacher Project Foundation of Ministry of Education
文摘This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorithm was used for the training of the linking-weights of the neural network.Hence it gets rid of the difficulty of choosing these tuning-knobs manually and provides easier condition for the wide applications of GPC on industrial plants.Simulation results illustrated the effectiveness of the method.
文摘The objective of this study is to develop an effective approach for product quality prediction in Computer Numerical Control turning of cantilever bars. A systematic predictive modelling procedure based on experimental investigations, neural network modelling and various statistical analysis tools is designed to produce the most accurate, practical and cost-effective prediction model. The modeling procedure begins by exploring the relationships between cutting parameters known to have an influence on quality characteristics of machined parts, such as dimensional errors, form errors and surface roughness, as well as their sensitivity to the process conditions. Based on these explorations and using numerous statistical tools, the most relevant variables to include in the prediction model are identified and fused using several artificial neural network architectures. An application on CNC turning of cantilever bars demonstrates that the proposed modeling procedure can be effectively and advantageously applied to quality characteristics prediction due to its simplicity, accuracy and efficiency. The experimental validation reveals that the resulting prediction model can correctly predict the quality characteristics of machined parts under variable machining conditions.
文摘We consider qualitatively robust predictive mappings of stochastic environmental models, where protection against outlier data is incorporated. We utilize digital representations of the models and deploy stochastic binary neural networks that are pre-trained to produce such mappings. The pre-training is implemented by a back propagating supervised learning algorithm which converges almost surely to the probabilities induced by the environment, under general ergodicity conditions.