Bleachers play a crucial role in practical engineering applications, and any damage incurred during their operationposes a significant threat to the safety of both life and property. Consequently, it becomes imperativ...Bleachers play a crucial role in practical engineering applications, and any damage incurred during their operationposes a significant threat to the safety of both life and property. Consequently, it becomes imperative to conductdamage diagnosis and health monitoring of bleachers. The intricate structure of bleachers, the varied types ofpotential damage, and the presence of similar vibration data in adjacent locations make it challenging to achievesatisfactory diagnosis accuracy through traditional time-frequency analysis methods. Furthermore, field environmentalnoise can adversely impact the accuracy of bleacher damage diagnosis. To enhance the accuracy and antinoisecapabilities of bleacher damage diagnosis, this paper proposes improvements to the existing ConvolutionalNeural Network with Training Interference (TICNN). The result is an advanced Convolutional Neural Networkmodel with superior accuracy and robust anti-noise capabilities, referred to as Enhanced TICNN (ETICNN).ETICNN autonomously extracts optimal damage-sensitive features from the original vibration data. To validatethe superiority of the proposed ETICNN, experiments are conducted using the bleacher model from Qatar Universityas the subject. Comparative studies under identical experimental conditions involve TICNN, Deep ConvolutionalNeural Networks with wide first-layer kernels (WDCNN), and One-Dimensional ConvolutionalNeural Network (1DCNN). The experimental findings demonstrate that the ETICNN model achieves the highestaccuracy, approximately 99%, and exhibits robust classification abilities in both Phases I and II of the damagediagnosis experiments. Simultaneously, the ETICNN model demonstrates strong anti-noise capabilities, outperformingTICNN by 3% to 4% and surpassing other models in performance.展开更多
The micromation and precision of the Micro-Electromechanical System demand that its manufacturing, measuring and assembling must work in a micro-manufacturing platform with good ability to isolate vibrations. This pap...The micromation and precision of the Micro-Electromechanical System demand that its manufacturing, measuring and assembling must work in a micro-manufacturing platform with good ability to isolate vibrations. This paper develops a vibration isolation system of micro-manufacturing platform. The brains of many kinds of birds can isolate vibrations well, such as woodpecker’s brain. When a woodpecker pecks the wood at the speed as 1.6 times as the velocity of sound, its brain will tolerate the wallop 1 500 times of the weight of itself without any damage. The isolation mechanics and organic texture of woodpecker’s brain that has good isolation characteristics were studied. A structure model of vibration isolation system for the micro-manufacturing platform is established based on the bionics of the bird’s brain vibration isolation mechanism. In order to isolate effectively the high frequency vibrations from the ground, a rubber layer is used to isolate vibrations passively between the micro-manufacturing platform’s pedestal and the ground. This layer corresponds to the cartilage and muscles in the outer meninges of the bird’s brain. The active vibration isolation technique is adopted to isolate vibrations between the micro-manufacturing platform and the pedestal. Air springs are used as elastic components, which correspond to the interspaces between the outer meninges and the encephala of the bird’s brain. Actuators are made of giant magnetostrictive material, and it corresponds to the nerves and neural muscles linking the meninges and the encephala. The actuators and air springs are arranged vertically in parallel to make use of the giant magnetostrictive actuators effectively. The air springs support almost all weight of the micro-manufacturing platform and the giant magnetostrictive actuators support almost no weight. In order to realize high performance to isolate complex micro-vibration, the control method using a three-layer neural network is presented. This vibration control system takes into account the floor disturbance and the direct disturbance acting on the micro-manufacturing platform. The absolute acceleration of the micro-manufacturing platform is used as the performance index of vibration control. The performance of the control system is tested by numerical simulation. Simulation results show that the active vibration isolation system has good isolation performance against the floor disturbance and the direct disturbance acting on the micro-manufacturing platform in all the frequency range.展开更多
According to the neural network theory, combined with the technical characteristicsof the hole-by-hole detonation technology, a BP network model on the forecast forblasting vibration parameters was built.Taking the de...According to the neural network theory, combined with the technical characteristicsof the hole-by-hole detonation technology, a BP network model on the forecast forblasting vibration parameters was built.Taking the deep hole stair demolition in a mine asan experimental object and using the raw information and the blasting vibration monitoringdata collected in the process of the hole-by-hole detonation, carried out some training andapplication work on the established BP network model through the Matlab software, andachieved good effect.Also computed the vibration parameter with the empirical formulaand the BP network model separately.After comparing with the actual value, it is discoveredthat the forecasting result by the BP network model is close to the actual value.展开更多
A method for reducing noise radiated from structures by vibration absorbers is presented. Since usual design method for the absorbers is invalid for noise reduction, the peaks of noise power in the frequency domain as...A method for reducing noise radiated from structures by vibration absorbers is presented. Since usual design method for the absorbers is invalid for noise reduction, the peaks of noise power in the frequency domain as cost functions are applied. Hence, the equations for obtaining optimal parameters of the absorbers become nonlinear expressions. To have the parameters, an accelerated neural network procedure has been presented. Numerical calculations have been carried out for a plate type cantilever beam with a large width, and experimental tests have been also performed for the same beam. It is clarified that the present method is valid for reducing noise radiated from structures. As for the usual design method for the absorbers, model analysis has been given, so the number of absorbers should be the same as that of the considered modes. While the nonlinear problem can be dealt with by the present method, there is no restriction on the number of absorbers or the model number.展开更多
Damage assessment of the wing under blast wave is essential to the vulnerability reduction design of aircraft. This paper introduces a critical relative distance prediction method of aircraft wing damage based on the ...Damage assessment of the wing under blast wave is essential to the vulnerability reduction design of aircraft. This paper introduces a critical relative distance prediction method of aircraft wing damage based on the back-propagation artificial neural network(BP-ANN), which is trained by finite element simulation results. Moreover, the finite element method(FEM) for wing blast damage simulation has been validated by ground explosion tests and further used for damage mode determination and damage characteristics analysis. The analysis results indicate that the wing is more likely to be damaged when the root is struck from vertical directions than others for a small charge. With the increase of TNT equivalent charge, the main damage mode of the wing gradually changes from the local skin tearing to overall structural deformation and the overpressure threshold of wing damage decreases rapidly. Compared to the FEM-based damage assessment, the BP-ANN-based method can predict the wing damage under a random blast wave with an average relative error of 4.78%. The proposed method and conclusions can be used as a reference for damage assessment under blast wave and low-vulnerability design of aircraft structures.展开更多
Roller bearing failure is one of the most common faults in rotating machines.Various techniques for bearing fault diagnosis based on faults feature extraction have been proposed.But feature extraction from fault signa...Roller bearing failure is one of the most common faults in rotating machines.Various techniques for bearing fault diagnosis based on faults feature extraction have been proposed.But feature extraction from fault signals requires expert prior information and human labour.Recently,deep learning algorithms have been applied extensively in the condition monitoring of rotating machines to learn features automatically from the input data.Given its robust performance in image recognition,the convolutional neural network(CNN)architecture has been widely used to learn automatically discriminative features from vibration images and classify health conditions.This paper proposes and evaluates a two-stage method RGBVI-CNN for roller bearings fault diagnosis.The first stage in the proposed method is to generate the RGB vibration images(RGBVIs)from the input vibration signals.To begin this process,first,the 1-D vibration signals were converted to 2-D grayscale vibration Images.Once the conversion was completed,the regions of interest(ROI)were found in the converted 2-D grayscale vibration images.Finally,to produce vibration images with more discriminative characteristics,an algorithm was applied to the 2-D grayscale vibration images to produce connected components-based RGB vibration images(RGBVIs)with sets of colours and texture features.In the second stage,with these RGBVIs a CNN-based architecture was employed to learn automatically features from the RGBVIs and to classify bearing health conditions.Two cases of fault classification of rolling element bearings are used to validate the proposed method.Experimental results of this investigation demonstrate that RGBVI-CNN can generate advantageous health condition features from bearing vibration signals and classify the health conditions under different working loads with high accuracy.Moreover,several classification models trained using RGBVI-CNN offered high performance in the testing results of the overall classification accuracy,precision,recall,and F-score.展开更多
Wearable flexible sensors attached on the neck have been developed to measure the vibration of vocal cords during speech.However,highfrequency attenuation caused by the frequency response of the flexible sensors and a...Wearable flexible sensors attached on the neck have been developed to measure the vibration of vocal cords during speech.However,highfrequency attenuation caused by the frequency response of the flexible sensors and absorption of high-frequency sound by the skin are obstacles to the practical application of these sensors in speech capture based on bone conduction.In this paper,speech enhancement techniques for enhancing the intelligibility of sensor signals are developed and compared.Four kinds of speech enhancement algorithms based on a fully connected neural network(FCNN),a long short-term memory(LSTM),a bidirectional long short-term memory(BLSTM),and a convolutional-recurrent neural network(CRNN)are adopted to enhance the sensor signals,and their performance after deployment on four kinds of edge and cloud platforms is also investigated.Experimental results show that the BLSTM performs best in improving speech quality,but is poorest with regard to hardware deployment.It improves short-time objective intelligibility(STOI)by 0.18 to nearly 0.80,which corresponds to a good intelligibility level,but it introduces latency as well as being a large model.The CRNN,which improves STOI to about 0.75,ranks second among the four neural networks.It is also the only model that is able to achieves real-time processing with all four hardware platforms,demonstrating its great potential for deployment on mobile platforms.To the best of our knowledge,this is one of the first trials to systematically and specifically develop processing techniques for bone-conduction speed signals captured by flexible sensors.The results demonstrate the possibility of realizing a wearable lightweight speech collection system based on flexible vibration sensors and real-time speech enhancement to compensate for high-frequency attenuation.展开更多
Studied forecasting and controlling the blasting fragmentation by using artifi- cial neural network for multi-ingredients. At the same time, according to the characteris- tic of multi-parameters input to network model...Studied forecasting and controlling the blasting fragmentation by using artifi- cial neural network for multi-ingredients. At the same time, according to the characteris- tic of multi-parameters input to network model, the gray correlation theory was employed to find out key factors, which can not only save time of computation and parameters in- put, but improve the stability of the model.展开更多
This paper advances a new approach based on wavelet and wavelet packet transforms in tandem with a fuzzy cluster neural network,abbreviated WPFCNN.Wavelets and wavelet packets decompose a vibration signal into differe...This paper advances a new approach based on wavelet and wavelet packet transforms in tandem with a fuzzy cluster neural network,abbreviated WPFCNN.Wavelets and wavelet packets decompose a vibration signal into different bands at different levels and provides multiresolution or multiscale views of a signal which is stationary or nonstationary. Fuzzy mathematics processes uncertain problems in engineering and converts the attributes extracted by wavelet packets to fuzzy membership degree.To achieve self-organizing classification,the MAXNET neural network is employed.WPFCNN integrates the advantages of wavelet packets and fuzzy cluster with MAXNET.The approach is adopted to process and classify vibration signal of a NH_3 compressor in a petrochemical plant.The results indicate that it is a useful and effective intelligence classification in the field of condition monitoring and fault diagnosis.展开更多
As an important component of load transfer,various fatigue damages occur in the track as the rail service life and train traffic increase gradually,such as rail corrugation,rail joint damage,uneven thermite welds,rail ...As an important component of load transfer,various fatigue damages occur in the track as the rail service life and train traffic increase gradually,such as rail corrugation,rail joint damage,uneven thermite welds,rail squats fas-tener defects,etc.Real-time recognition of track defects plays a vital role in ensuring the safe and stable operation of rail transit.In this paper,an intelligent and innovative method is proposed to detect the track defects by using axle-box vibration acceleration and deep learning network,and the coexistence of the above-mentioned typical track defects in the track system is considered.Firstly,the dynamic relationship between the track defects(using the example of the fastening defects)and the axle-box vibration acceleration(ABVA)is investigated using the dynamic vehicle-track model.Then,a simulation model for the coupled dynamics of the vehicle and track with different track defects is established,and the wavelet power spectrum(WPS)analysis is performed for the vibra-tion acceleration signals of the axle box to extract the characteristic response.Lastly,using wavelet spectrum photos as input,an automatic detection technique based on the deep convolution neural network(DCNN)is sug-gested to realize the real-time intelligent detection and identification of various track problems.Thefindings demonstrate that the suggested approach achieves a 96.72%classification accuracy.展开更多
The kinetic model is the theoretical basis for optimizing the structure and operation performance of vibration screening devices.In this paper,a biological neurodynamic equation and neural connections were established...The kinetic model is the theoretical basis for optimizing the structure and operation performance of vibration screening devices.In this paper,a biological neurodynamic equation and neural connections were established according to the motion and interaction properties of the material under vibration excitation.The material feeding to the screen and the material passing through apertures were considered as excitatory and inhibitory inputs,respectively,and the generated stable neural activity landscape was used to describe the material distribution on the 2D screen surface.The dynamic process of material vibration screening was simulated using discrete element method(DEM).By comparing the similarity between the material distribution established using biological neural network(BNN)and that obtained using DEM simulation,the optimum coefficients of BNN model under a certain screening parameter were determined,that is,one relationship between the BNN model coefficients and the screening operation parameters was established.Different screening parameters were randomly selected,and the corresponding relationships were established as a database.Then,with straw/grain ratio,aperture diameter,inclination angle,vibration strength in normal and tangential directions as inputs,five independent adaptive neuro-fuzzy inference systems(ANFIS)were established to predict the optimum BNN model coefficients,respectively.The training results indicated that ANFIS models had good stability and accuracy.The flexibility and adaptability of the proposed BNN method was demonstrated by modeling material distribution under complex feeding conditions such as multiple regions and non-uniform rate.展开更多
Microseismic monitoring system is one of the effective methods for deep mining geo-stress monitoring.The principle of microseismic monitoring system is to analyze the mechanical parameters contained in microseismic ev...Microseismic monitoring system is one of the effective methods for deep mining geo-stress monitoring.The principle of microseismic monitoring system is to analyze the mechanical parameters contained in microseismic events for providing accurate information of rockmass.The accurate identification of microseismic events and blasts determines the timeliness and accuracy of early warning of microseismic monitoring technology.An image identification model based on Convolutional Neural Network(CNN)is established in this paper for the seismic waveforms of microseismic events and blasts.Firstly,the training set,test set,and validation set are collected,which are composed of 5250,1500,and 750 seismic waveforms of microseismic events and blasts,respectively.The classified data sets are preprocessed and input into the constructed CNN in CPU mode for training.Results show that the accuracies of microseismic events and blasts are 99.46%and 99.33%in the test set,respectively.The accuracies of microseismic events and blasts are 100%and 98.13%in the validation set,respectively.The proposed method gives superior performance when compared with existed methods.The accuracies of models using logistic regression and artificial neural network(ANN)based on the same data set are 54.43%and 67.9%in the test set,respectively.Then,the ROC curves of the three models are obtained and compared,which show that the CNN gives an absolute advantage in this classification model when the original seismic waveform are used in training the model.It not only decreases the influence of individual differences in experience,but also removes the errors induced by source and waveform parameters.It is proved that the established discriminant method improves the efficiency and accuracy of microseismic data processing for monitoring rock instability and seismicity.展开更多
Blasting is the live wire of mining and its operations,with air overpressure(AOp)recognised as an end product of blasting.AOp is known to be one of the most important environmental hazards of mining.Further research i...Blasting is the live wire of mining and its operations,with air overpressure(AOp)recognised as an end product of blasting.AOp is known to be one of the most important environmental hazards of mining.Further research in this area of mining is required to help improve on safety of the working environment.Review of previous studies has shown that many empirical and artificial intelligence(AI)methods have been proposed as a forecasting model.As an alternative to the previous methods,this study proposes a new class of advanced artificial neural network known as brain inspired emotional neural network(BIENN)to predict AOp.The proposed BI-ENN approach is compared with two classical AOp predictors(generalised predictor and McKenzie formula)and three established AI methods of backpropagation neural network(BPNN),group method of data handling(GMDH),and support vector machine(SVM).From the analysis of the results,BI-ENN is the best by achieving the least RMSE,MAPE,NRMSE and highest R,VAF and PI values of 1.0941,0.8339%,0.1243%,0.8249,68.0512%and 1.2367 respectively and thus can be used for monitoring and controlling AOp.展开更多
A genetic algorithm based on the nested intervals chaos search (NICGA) hasbeen given. Because the nested intervals chaos search is introduced into the NICGA to initialize thepopulation and to lead the evolution of the...A genetic algorithm based on the nested intervals chaos search (NICGA) hasbeen given. Because the nested intervals chaos search is introduced into the NICGA to initialize thepopulation and to lead the evolution of the population, the NICGA has the advantages of decreasingthe population size, enhancing the local search ability, and improving the computational efficiencyand optimization precision. In a multi4ayer feed forward neural network model for predicting thesilicon content in hot metal, the NICGA was used to optimize the connection weights and thresholdvalues of the neural network to improve the prediction precision. The application results show thatthe precision of predicting the silicon content has been increased.展开更多
A new active control scheme, based on neural network, for the suppression of oscillation in multiple-degree-of-freedom (MDOF) offshore platforms, is studied in this paper. With the main advantages of neural network, i...A new active control scheme, based on neural network, for the suppression of oscillation in multiple-degree-of-freedom (MDOF) offshore platforms, is studied in this paper. With the main advantages of neural network, i.e. the inherent robustness, fault tolerance, and generalized capability of its parallel massive interconnection structure, the active structural control of offshore platforms under random waves is accomplished by use of the BP neural network model. The neural network is trained offline with the data generated from numerical analysis, and it simulates the process of Classical Linear Quadratic Regular Control for the platform under random waves. After the learning phase, the trained network has learned about the nonlinear dynamic behavior of the active control system, and is capable of predicting the active control forces of the next time steps. The results obtained show that the active control is feasible and effective, and it finally overcomes time delay owing to the robustness, fault tolerance, and generalized capability of artificial neural network.展开更多
Based on the skills of initializing weight distribution, adding an impulse in a neural network and expanding the ideal of plural weights, an artificial neural network model with three connection weights between one an...Based on the skills of initializing weight distribution, adding an impulse in a neural network and expanding the ideal of plural weights, an artificial neural network model with three connection weights between one and another neural unit was established to predict silicon content of blast furnace hot metal. After the neural network was trained in the off-line state on the basis of a large number of practical data of a commercial blast furnace and making many learning patterns, satisfactory testing and simulating results of the model were obtained.展开更多
A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other com...A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft.It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis.For this reason,a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems.To monitor the gear conditions,the bispectrum analysis was first employed to detect gear faults.The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique,which could be regarded as an index actualizing forepart gear faults diagnosis.Both the back propagation neural network (BPNN) and the radial-basis function neural network (RBFNN) were applied to identify the states of the gearbox.The numeric and experimental test results show the bispectral patterns of varying gear fault severities are different so that distinct fault features of the vibrant signal of a marine gearbox can be extracted effectively using the bispectrum,and the ANN classification method has achieved high detection accuracy.Hence,the proposed diagnostic techniques have the capability of diagnosing marine gear faults in the earlier phases,and thus have application importance.展开更多
Frequency and scale of the blasting events are increasing to boost limestone production. Mines areapproaching close to inhabited areas due to growing population and limited availability of land resourceswhich has chal...Frequency and scale of the blasting events are increasing to boost limestone production. Mines areapproaching close to inhabited areas due to growing population and limited availability of land resourceswhich has challenged the management to go for safe blasts with special reference to opencast mining.The study aims to predict the distance covered by the flyrock induced by blasting using artificial neuralnetwork (ANN) and multi-variate regression analysis (MVRA) for better assessment. Blast design andgeotechnical parameters, such as linear charge concentration, burden, stemming length, specific charge,unconfined compressive strength (UCS), and rock quality designation (RQD), have been selected as inputparameters and flyrock distance used as output parameter. ANN has been trained using 95 datasets ofexperimental blasts conducted in 4 opencast limestone mines in India. Thirty datasets have been used fortesting and validation of trained neural network. Flyrock distances have been predicted by ANN, MVRA,as well as further calculated using motion analysis of flyrock projectiles and compared with the observeddata. Back propagation neural network (BPNN) has been proven to be a superior predictive tool whencompared with MVRA. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
An investigation on the neural networks based active vibration control of flexible redundant manipulators was conducted. The smart links of the manipulator were synthesized with the flexible links to which were attach...An investigation on the neural networks based active vibration control of flexible redundant manipulators was conducted. The smart links of the manipulator were synthesized with the flexible links to which were attached piezoceramic actuators and strain gauge sensors. A nonlinear adaptive control strategy named neural networks based indirect adaptive control (NNIAC) was employed to improve the dynamic performance of the manipulator. The mathematical model of the 4-layered dynamic recurrent neural networks (DRNN) was introduced. The neuro-identifier and the neuro-controller featuring the DRNN topology were designed off line so as to enhance the initial robustness of the NNIAC. By adjusting the neuro-identifier and the neuro-controller alternatively, the manipulator was controlled on line for achieving the desired dynamic performance. Finally, a planar 3R redundant manipulator with one smart link was utilized as an illustrative example. The simulation results proved the validity of the control strategy.展开更多
基金the Nature Science Foundation of Hebei Province Grant No.E2020402060Key Laboratory of Intelligent Industrial Equipment Technology of Hebei Province(Hebei University of Engineering)under Grant 202206.
文摘Bleachers play a crucial role in practical engineering applications, and any damage incurred during their operationposes a significant threat to the safety of both life and property. Consequently, it becomes imperative to conductdamage diagnosis and health monitoring of bleachers. The intricate structure of bleachers, the varied types ofpotential damage, and the presence of similar vibration data in adjacent locations make it challenging to achievesatisfactory diagnosis accuracy through traditional time-frequency analysis methods. Furthermore, field environmentalnoise can adversely impact the accuracy of bleacher damage diagnosis. To enhance the accuracy and antinoisecapabilities of bleacher damage diagnosis, this paper proposes improvements to the existing ConvolutionalNeural Network with Training Interference (TICNN). The result is an advanced Convolutional Neural Networkmodel with superior accuracy and robust anti-noise capabilities, referred to as Enhanced TICNN (ETICNN).ETICNN autonomously extracts optimal damage-sensitive features from the original vibration data. To validatethe superiority of the proposed ETICNN, experiments are conducted using the bleacher model from Qatar Universityas the subject. Comparative studies under identical experimental conditions involve TICNN, Deep ConvolutionalNeural Networks with wide first-layer kernels (WDCNN), and One-Dimensional ConvolutionalNeural Network (1DCNN). The experimental findings demonstrate that the ETICNN model achieves the highestaccuracy, approximately 99%, and exhibits robust classification abilities in both Phases I and II of the damagediagnosis experiments. Simultaneously, the ETICNN model demonstrates strong anti-noise capabilities, outperformingTICNN by 3% to 4% and surpassing other models in performance.
文摘The micromation and precision of the Micro-Electromechanical System demand that its manufacturing, measuring and assembling must work in a micro-manufacturing platform with good ability to isolate vibrations. This paper develops a vibration isolation system of micro-manufacturing platform. The brains of many kinds of birds can isolate vibrations well, such as woodpecker’s brain. When a woodpecker pecks the wood at the speed as 1.6 times as the velocity of sound, its brain will tolerate the wallop 1 500 times of the weight of itself without any damage. The isolation mechanics and organic texture of woodpecker’s brain that has good isolation characteristics were studied. A structure model of vibration isolation system for the micro-manufacturing platform is established based on the bionics of the bird’s brain vibration isolation mechanism. In order to isolate effectively the high frequency vibrations from the ground, a rubber layer is used to isolate vibrations passively between the micro-manufacturing platform’s pedestal and the ground. This layer corresponds to the cartilage and muscles in the outer meninges of the bird’s brain. The active vibration isolation technique is adopted to isolate vibrations between the micro-manufacturing platform and the pedestal. Air springs are used as elastic components, which correspond to the interspaces between the outer meninges and the encephala of the bird’s brain. Actuators are made of giant magnetostrictive material, and it corresponds to the nerves and neural muscles linking the meninges and the encephala. The actuators and air springs are arranged vertically in parallel to make use of the giant magnetostrictive actuators effectively. The air springs support almost all weight of the micro-manufacturing platform and the giant magnetostrictive actuators support almost no weight. In order to realize high performance to isolate complex micro-vibration, the control method using a three-layer neural network is presented. This vibration control system takes into account the floor disturbance and the direct disturbance acting on the micro-manufacturing platform. The absolute acceleration of the micro-manufacturing platform is used as the performance index of vibration control. The performance of the control system is tested by numerical simulation. Simulation results show that the active vibration isolation system has good isolation performance against the floor disturbance and the direct disturbance acting on the micro-manufacturing platform in all the frequency range.
基金Supported by the National Natural Science Foundation of China(50778107)
文摘According to the neural network theory, combined with the technical characteristicsof the hole-by-hole detonation technology, a BP network model on the forecast forblasting vibration parameters was built.Taking the deep hole stair demolition in a mine asan experimental object and using the raw information and the blasting vibration monitoringdata collected in the process of the hole-by-hole detonation, carried out some training andapplication work on the established BP network model through the Matlab software, andachieved good effect.Also computed the vibration parameter with the empirical formulaand the BP network model separately.After comparing with the actual value, it is discoveredthat the forecasting result by the BP network model is close to the actual value.
文摘A method for reducing noise radiated from structures by vibration absorbers is presented. Since usual design method for the absorbers is invalid for noise reduction, the peaks of noise power in the frequency domain as cost functions are applied. Hence, the equations for obtaining optimal parameters of the absorbers become nonlinear expressions. To have the parameters, an accelerated neural network procedure has been presented. Numerical calculations have been carried out for a plate type cantilever beam with a large width, and experimental tests have been also performed for the same beam. It is clarified that the present method is valid for reducing noise radiated from structures. As for the usual design method for the absorbers, model analysis has been given, so the number of absorbers should be the same as that of the considered modes. While the nonlinear problem can be dealt with by the present method, there is no restriction on the number of absorbers or the model number.
基金supported by the Natural Science Foundation of Shaanxi Province (Grant No. 2020JQ-122)the Fund support of Science and Technology on Transient Impact Laboratory。
文摘Damage assessment of the wing under blast wave is essential to the vulnerability reduction design of aircraft. This paper introduces a critical relative distance prediction method of aircraft wing damage based on the back-propagation artificial neural network(BP-ANN), which is trained by finite element simulation results. Moreover, the finite element method(FEM) for wing blast damage simulation has been validated by ground explosion tests and further used for damage mode determination and damage characteristics analysis. The analysis results indicate that the wing is more likely to be damaged when the root is struck from vertical directions than others for a small charge. With the increase of TNT equivalent charge, the main damage mode of the wing gradually changes from the local skin tearing to overall structural deformation and the overpressure threshold of wing damage decreases rapidly. Compared to the FEM-based damage assessment, the BP-ANN-based method can predict the wing damage under a random blast wave with an average relative error of 4.78%. The proposed method and conclusions can be used as a reference for damage assessment under blast wave and low-vulnerability design of aircraft structures.
文摘Roller bearing failure is one of the most common faults in rotating machines.Various techniques for bearing fault diagnosis based on faults feature extraction have been proposed.But feature extraction from fault signals requires expert prior information and human labour.Recently,deep learning algorithms have been applied extensively in the condition monitoring of rotating machines to learn features automatically from the input data.Given its robust performance in image recognition,the convolutional neural network(CNN)architecture has been widely used to learn automatically discriminative features from vibration images and classify health conditions.This paper proposes and evaluates a two-stage method RGBVI-CNN for roller bearings fault diagnosis.The first stage in the proposed method is to generate the RGB vibration images(RGBVIs)from the input vibration signals.To begin this process,first,the 1-D vibration signals were converted to 2-D grayscale vibration Images.Once the conversion was completed,the regions of interest(ROI)were found in the converted 2-D grayscale vibration images.Finally,to produce vibration images with more discriminative characteristics,an algorithm was applied to the 2-D grayscale vibration images to produce connected components-based RGB vibration images(RGBVIs)with sets of colours and texture features.In the second stage,with these RGBVIs a CNN-based architecture was employed to learn automatically features from the RGBVIs and to classify bearing health conditions.Two cases of fault classification of rolling element bearings are used to validate the proposed method.Experimental results of this investigation demonstrate that RGBVI-CNN can generate advantageous health condition features from bearing vibration signals and classify the health conditions under different working loads with high accuracy.Moreover,several classification models trained using RGBVI-CNN offered high performance in the testing results of the overall classification accuracy,precision,recall,and F-score.
基金This work was supported in part by the Key Research and Development Program of Zhejiang Province,China(Grant No.2021C05005)the National Natural Science Foundation of China(Grant No.81771880)the Tianjin Municipal Government of China(Grant No.19JCQNJC12800).
文摘Wearable flexible sensors attached on the neck have been developed to measure the vibration of vocal cords during speech.However,highfrequency attenuation caused by the frequency response of the flexible sensors and absorption of high-frequency sound by the skin are obstacles to the practical application of these sensors in speech capture based on bone conduction.In this paper,speech enhancement techniques for enhancing the intelligibility of sensor signals are developed and compared.Four kinds of speech enhancement algorithms based on a fully connected neural network(FCNN),a long short-term memory(LSTM),a bidirectional long short-term memory(BLSTM),and a convolutional-recurrent neural network(CRNN)are adopted to enhance the sensor signals,and their performance after deployment on four kinds of edge and cloud platforms is also investigated.Experimental results show that the BLSTM performs best in improving speech quality,but is poorest with regard to hardware deployment.It improves short-time objective intelligibility(STOI)by 0.18 to nearly 0.80,which corresponds to a good intelligibility level,but it introduces latency as well as being a large model.The CRNN,which improves STOI to about 0.75,ranks second among the four neural networks.It is also the only model that is able to achieves real-time processing with all four hardware platforms,demonstrating its great potential for deployment on mobile platforms.To the best of our knowledge,this is one of the first trials to systematically and specifically develop processing techniques for bone-conduction speed signals captured by flexible sensors.The results demonstrate the possibility of realizing a wearable lightweight speech collection system based on flexible vibration sensors and real-time speech enhancement to compensate for high-frequency attenuation.
文摘Studied forecasting and controlling the blasting fragmentation by using artifi- cial neural network for multi-ingredients. At the same time, according to the characteris- tic of multi-parameters input to network model, the gray correlation theory was employed to find out key factors, which can not only save time of computation and parameters in- put, but improve the stability of the model.
基金This project was supported by National Natural Science Foundation of China
文摘This paper advances a new approach based on wavelet and wavelet packet transforms in tandem with a fuzzy cluster neural network,abbreviated WPFCNN.Wavelets and wavelet packets decompose a vibration signal into different bands at different levels and provides multiresolution or multiscale views of a signal which is stationary or nonstationary. Fuzzy mathematics processes uncertain problems in engineering and converts the attributes extracted by wavelet packets to fuzzy membership degree.To achieve self-organizing classification,the MAXNET neural network is employed.WPFCNN integrates the advantages of wavelet packets and fuzzy cluster with MAXNET.The approach is adopted to process and classify vibration signal of a NH_3 compressor in a petrochemical plant.The results indicate that it is a useful and effective intelligence classification in the field of condition monitoring and fault diagnosis.
基金supported by the Doctoral Fund Project(Grant No.X22003Z).
文摘As an important component of load transfer,various fatigue damages occur in the track as the rail service life and train traffic increase gradually,such as rail corrugation,rail joint damage,uneven thermite welds,rail squats fas-tener defects,etc.Real-time recognition of track defects plays a vital role in ensuring the safe and stable operation of rail transit.In this paper,an intelligent and innovative method is proposed to detect the track defects by using axle-box vibration acceleration and deep learning network,and the coexistence of the above-mentioned typical track defects in the track system is considered.Firstly,the dynamic relationship between the track defects(using the example of the fastening defects)and the axle-box vibration acceleration(ABVA)is investigated using the dynamic vehicle-track model.Then,a simulation model for the coupled dynamics of the vehicle and track with different track defects is established,and the wavelet power spectrum(WPS)analysis is performed for the vibra-tion acceleration signals of the axle box to extract the characteristic response.Lastly,using wavelet spectrum photos as input,an automatic detection technique based on the deep convolution neural network(DCNN)is sug-gested to realize the real-time intelligent detection and identification of various track problems.Thefindings demonstrate that the suggested approach achieves a 96.72%classification accuracy.
基金supported by the National Natural Science Foundation of China(grant No.52375247)Natural Science Foundation of Jiangsu Province(grant No.BK20201421)+3 种基金Graduate Research and Innovation Projects of Jiangsu Province(grant No.KYCX21-3380)Jiangsu Agricultural Science and Technology Independent Innovation Fund(grant No.CX(22)3090)Taizhou Science and Technology Project(grant No.TN202101)a Project Funded by the Priority Academic Program Development of Jiangsu Higher。
文摘The kinetic model is the theoretical basis for optimizing the structure and operation performance of vibration screening devices.In this paper,a biological neurodynamic equation and neural connections were established according to the motion and interaction properties of the material under vibration excitation.The material feeding to the screen and the material passing through apertures were considered as excitatory and inhibitory inputs,respectively,and the generated stable neural activity landscape was used to describe the material distribution on the 2D screen surface.The dynamic process of material vibration screening was simulated using discrete element method(DEM).By comparing the similarity between the material distribution established using biological neural network(BNN)and that obtained using DEM simulation,the optimum coefficients of BNN model under a certain screening parameter were determined,that is,one relationship between the BNN model coefficients and the screening operation parameters was established.Different screening parameters were randomly selected,and the corresponding relationships were established as a database.Then,with straw/grain ratio,aperture diameter,inclination angle,vibration strength in normal and tangential directions as inputs,five independent adaptive neuro-fuzzy inference systems(ANFIS)were established to predict the optimum BNN model coefficients,respectively.The training results indicated that ANFIS models had good stability and accuracy.The flexibility and adaptability of the proposed BNN method was demonstrated by modeling material distribution under complex feeding conditions such as multiple regions and non-uniform rate.
基金Projects(51822407,51774327,51664016)supported by the National Natural Science Foundation of China。
文摘Microseismic monitoring system is one of the effective methods for deep mining geo-stress monitoring.The principle of microseismic monitoring system is to analyze the mechanical parameters contained in microseismic events for providing accurate information of rockmass.The accurate identification of microseismic events and blasts determines the timeliness and accuracy of early warning of microseismic monitoring technology.An image identification model based on Convolutional Neural Network(CNN)is established in this paper for the seismic waveforms of microseismic events and blasts.Firstly,the training set,test set,and validation set are collected,which are composed of 5250,1500,and 750 seismic waveforms of microseismic events and blasts,respectively.The classified data sets are preprocessed and input into the constructed CNN in CPU mode for training.Results show that the accuracies of microseismic events and blasts are 99.46%and 99.33%in the test set,respectively.The accuracies of microseismic events and blasts are 100%and 98.13%in the validation set,respectively.The proposed method gives superior performance when compared with existed methods.The accuracies of models using logistic regression and artificial neural network(ANN)based on the same data set are 54.43%and 67.9%in the test set,respectively.Then,the ROC curves of the three models are obtained and compared,which show that the CNN gives an absolute advantage in this classification model when the original seismic waveform are used in training the model.It not only decreases the influence of individual differences in experience,but also removes the errors induced by source and waveform parameters.It is proved that the established discriminant method improves the efficiency and accuracy of microseismic data processing for monitoring rock instability and seismicity.
基金This work was supported by the Ghana National Petroleum Corporation(GNPC)through the GNPC Professorial Chair in Mining Engineering at the University of Mines and Technology(UMaT),GhanaThe authors thank the Ghana National Petroleum Corporation(GNPC)for providing funding to support this work through the GNPC Professorial Chair in Mining Engineering at the University of Mines and Technology(UMaT),Ghana.
文摘Blasting is the live wire of mining and its operations,with air overpressure(AOp)recognised as an end product of blasting.AOp is known to be one of the most important environmental hazards of mining.Further research in this area of mining is required to help improve on safety of the working environment.Review of previous studies has shown that many empirical and artificial intelligence(AI)methods have been proposed as a forecasting model.As an alternative to the previous methods,this study proposes a new class of advanced artificial neural network known as brain inspired emotional neural network(BIENN)to predict AOp.The proposed BI-ENN approach is compared with two classical AOp predictors(generalised predictor and McKenzie formula)and three established AI methods of backpropagation neural network(BPNN),group method of data handling(GMDH),and support vector machine(SVM).From the analysis of the results,BI-ENN is the best by achieving the least RMSE,MAPE,NRMSE and highest R,VAF and PI values of 1.0941,0.8339%,0.1243%,0.8249,68.0512%and 1.2367 respectively and thus can be used for monitoring and controlling AOp.
文摘A genetic algorithm based on the nested intervals chaos search (NICGA) hasbeen given. Because the nested intervals chaos search is introduced into the NICGA to initialize thepopulation and to lead the evolution of the population, the NICGA has the advantages of decreasingthe population size, enhancing the local search ability, and improving the computational efficiencyand optimization precision. In a multi4ayer feed forward neural network model for predicting thesilicon content in hot metal, the NICGA was used to optimize the connection weights and thresholdvalues of the neural network to improve the prediction precision. The application results show thatthe precision of predicting the silicon content has been increased.
文摘A new active control scheme, based on neural network, for the suppression of oscillation in multiple-degree-of-freedom (MDOF) offshore platforms, is studied in this paper. With the main advantages of neural network, i.e. the inherent robustness, fault tolerance, and generalized capability of its parallel massive interconnection structure, the active structural control of offshore platforms under random waves is accomplished by use of the BP neural network model. The neural network is trained offline with the data generated from numerical analysis, and it simulates the process of Classical Linear Quadratic Regular Control for the platform under random waves. After the learning phase, the trained network has learned about the nonlinear dynamic behavior of the active control system, and is capable of predicting the active control forces of the next time steps. The results obtained show that the active control is feasible and effective, and it finally overcomes time delay owing to the robustness, fault tolerance, and generalized capability of artificial neural network.
文摘Based on the skills of initializing weight distribution, adding an impulse in a neural network and expanding the ideal of plural weights, an artificial neural network model with three connection weights between one and another neural unit was established to predict silicon content of blast furnace hot metal. After the neural network was trained in the off-line state on the basis of a large number of practical data of a commercial blast furnace and making many learning patterns, satisfactory testing and simulating results of the model were obtained.
基金Supported by the National Natural Sciences Foundation of China (No. 50975213 and No. 50705070)Doctoral Fund for the New Teachers of Ministry of Education of China (No. 20070497029)the Program of Introducing Talents of Discipline to Universities (No. B08031)
文摘A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft.It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis.For this reason,a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems.To monitor the gear conditions,the bispectrum analysis was first employed to detect gear faults.The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique,which could be regarded as an index actualizing forepart gear faults diagnosis.Both the back propagation neural network (BPNN) and the radial-basis function neural network (RBFNN) were applied to identify the states of the gearbox.The numeric and experimental test results show the bispectral patterns of varying gear fault severities are different so that distinct fault features of the vibrant signal of a marine gearbox can be extracted effectively using the bispectrum,and the ANN classification method has achieved high detection accuracy.Hence,the proposed diagnostic techniques have the capability of diagnosing marine gear faults in the earlier phases,and thus have application importance.
文摘Frequency and scale of the blasting events are increasing to boost limestone production. Mines areapproaching close to inhabited areas due to growing population and limited availability of land resourceswhich has challenged the management to go for safe blasts with special reference to opencast mining.The study aims to predict the distance covered by the flyrock induced by blasting using artificial neuralnetwork (ANN) and multi-variate regression analysis (MVRA) for better assessment. Blast design andgeotechnical parameters, such as linear charge concentration, burden, stemming length, specific charge,unconfined compressive strength (UCS), and rock quality designation (RQD), have been selected as inputparameters and flyrock distance used as output parameter. ANN has been trained using 95 datasets ofexperimental blasts conducted in 4 opencast limestone mines in India. Thirty datasets have been used fortesting and validation of trained neural network. Flyrock distances have been predicted by ANN, MVRA,as well as further calculated using motion analysis of flyrock projectiles and compared with the observeddata. Back propagation neural network (BPNN) has been proven to be a superior predictive tool whencompared with MVRA. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金Supported by National Natural Science Foundation of China(No.59975001 and 50205019).
文摘An investigation on the neural networks based active vibration control of flexible redundant manipulators was conducted. The smart links of the manipulator were synthesized with the flexible links to which were attached piezoceramic actuators and strain gauge sensors. A nonlinear adaptive control strategy named neural networks based indirect adaptive control (NNIAC) was employed to improve the dynamic performance of the manipulator. The mathematical model of the 4-layered dynamic recurrent neural networks (DRNN) was introduced. The neuro-identifier and the neuro-controller featuring the DRNN topology were designed off line so as to enhance the initial robustness of the NNIAC. By adjusting the neuro-identifier and the neuro-controller alternatively, the manipulator was controlled on line for achieving the desired dynamic performance. Finally, a planar 3R redundant manipulator with one smart link was utilized as an illustrative example. The simulation results proved the validity of the control strategy.