General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neu...General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neural network inverse adaptive controller is used. We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence, and then through constructing the pseudo-plant, a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system. The simulation results show the validity of this scheme.展开更多
One of the most important problems in robot kinematics and control is, finding the solution of Inverse Kinematics. Inverse kinematics computation has been one of the main problems in robotics research. As the Complexi...One of the most important problems in robot kinematics and control is, finding the solution of Inverse Kinematics. Inverse kinematics computation has been one of the main problems in robotics research. As the Complexity of robot increases, obtaining the inverse kinematics is difficult and computationally expensive. Traditional methods such as geometric, iterative and algebraic are inadequate if the joint structure of the manipulator is more complex. As alternative approaches, neural networks and optimal search methods have been widely used for inverse kinematics modeling and control in robotics This paper proposes neural network architecture that consists of 6 sub-neural networks to solve the inverse kinematics problem for robotics manipulators with 2 or higher degrees of freedom. The neural networks utilized are multi-layered perceptron (MLP) with a back-propagation training algorithm. This approach will reduce the complexity of the algorithm and calculation (matrix inversion) faced when using the Inverse Geometric Models implementation (IGM) in robotics. The obtained results are presented and analyzed in order to prove the efficiency of the proposed approach.展开更多
Adaptive inverse control system can improve the performance of turbo decoding,and modeling turbo decoder is one of the most important technologies. A neural network model for the inverse model of turbo decoding is pro...Adaptive inverse control system can improve the performance of turbo decoding,and modeling turbo decoder is one of the most important technologies. A neural network model for the inverse model of turbo decoding is proposed in this paper. Compared with linear filter with its revi-sion,the general relationship between the input and output of the inverse model of turbo decoding system can be established exactly by Nonlinear Auto-Regressive eXogeneous input (NARX) filter. Combined with linear inverse system,it has simpler structure and costs less computation,thus can satisfy the demand of real-time turbo decoding. Simulation results show that neural network in-verse control system can improve the performance of turbo decoding further than other linear con-trol system.展开更多
Photonic inverse design concerns the problem of finding photonic structures with target optical properties.However,traditional methods based on optimization algorithms are time-consuming and computationally expensive....Photonic inverse design concerns the problem of finding photonic structures with target optical properties.However,traditional methods based on optimization algorithms are time-consuming and computationally expensive.Recently,deep learning-based approaches have been developed to tackle the problem of inverse design efficiently.Although most of these neural network models have demonstrated high accuracy in different inverse design problems,no previous study has examined the potential effects under given constraints in nanomanufacturing.Additionally,the relative strength of different deep learning-based inverse design approaches has not been fully investigated.Here,we benchmark three commonly used deep learning models in inverse design:Tandem networks,Variational Auto-Encoders,and Generative Adversarial Networks.We provide detailed comparisons in terms of their accuracy,diversity,and robustness.We find that tandem networks and Variational Auto-Encoders give the best accuracy,while Generative Adversarial Networks lead to the most diverse predictions.Our findings could serve as a guideline for researchers to select the model that can best suit their design criteria and fabrication considerations.In addition,our code and data are publicly available,which could be used for future inverse design model development and benchmarking.展开更多
The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters. In particular, the behavior of earth resembles the non- linearity applications. An eff...The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters. In particular, the behavior of earth resembles the non- linearity applications. An efficient tool is needed for the interpretation of geophysical parameters to study the subsurface of the earth. Artificial Neural Networks (ANN) perform certain tasks if the structure of the network is modified accordingly for the purpose it has been used. The three most robust networks were taken and comparatively analyzed for their performance to choose the appropriate network. The single- layer feed-forward neural network with the back propagation algorithm is chosen as one of the well- suited networks after comparing the results. Initially, certain synthetic data sets of all three-layer curves have been taken tk^r training the network, and the network is validated by the field datasets collected from Tuticorin Coastal Region (78°7'30"E and 8°48'45"N), Tamil Nadu, India. The interpretation has been done successfully using the corresponding learning algorithm in the present study. With proper training of back propagation networks, it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data concerning the synthetic data trained earlier in the appropriate network. The network is trained with more Vertical Electrical Sounding (VES) data, and this trained network is demon- strated by the field data. Groundwater table depth also has been modeled.展开更多
To increase predictive behaviors of neural network dynamic model, an experimental case study of a new approach to systems controller design is presented. The experiment is based on neural networks inverse plant model....To increase predictive behaviors of neural network dynamic model, an experimental case study of a new approach to systems controller design is presented. The experiment is based on neural networks inverse plant model. Special rules for network training are developed. Such system is close to model-based predictive control, but needs much less computational resources. The approach advantages are shown by the control of laboratory complex plants.展开更多
Seismic impedance inversion is an important technique for structure identification and reservoir prediction.Model-based and data-driven impedance inversion are the commonly used inversion methods.In practice,the geoph...Seismic impedance inversion is an important technique for structure identification and reservoir prediction.Model-based and data-driven impedance inversion are the commonly used inversion methods.In practice,the geophysical inversion problem is essentially an ill-posedness problem,which means that there are many solutions corresponding to the same seismic data.Therefore,regularization schemes,which can provide stable and unique inversion results to some extent,have been introduced into the objective function as constrain terms.Among them,given a low-frequency initial impedance model is the most commonly used regularization method,which can provide a smooth and stable solution.However,this model-based inversion method relies heavily on the initial model and the inversion result is band limited to the effective frequency bandwidth of seismic data,which cannot effectively improve the seismic vertical resolution and is difficult to be applied to complex structural regions.Therefore,we propose a data-driven approach for high-resolution impedance inversion based on the bidirectional long short-term memory recurrent neural network,which regards seismic data as time-series rather than image-like patches.Compared with the model-based inversion method,the data-driven approach provides higher resolution inversion results,which demonstrates the effectiveness of the data-driven method for recovering the high-frequency components.However,judging from the inversion results for characterization the spatial distribution of thin-layer sands,the accuracy of high-frequency components is difficult to guarantee.Therefore,we add the model constraint to the objective function to overcome the shortages of relying only on the data-driven schemes.First,constructing the supervisor1 based on the bidirectional long short-term memory recurrent neural network,which provides the predicted impedance with higher resolution.Then,convolution constraint as supervisor2 is introduced into the objective function to guarantee the reliability and accuracy of the inversion results,which makes the synthetic seismic data obtained from the inversion result consistent with the input data.Finally,we test the proposed scheme based on the synthetic and field seismic data.Compared to model-based and purely data-driven impedance inversion methods,the proposed approach provides more accurate and reliable inversion results while with higher vertical resolution and better spatial continuity.The inversion results accurately characterize the spatial distribution relationship of thin sands.The model tests demonstrate that the model-constrained and data-driven impedance inversion scheme can effectively improve the thin-layer structure characterization based on the seismic data.Moreover,tests on the oil field data indicate the practicality and adaptability of the proposed method.展开更多
针对现有主动悬架在应用最优控制时缺乏路面扰动识别内容的问题,提出一种识别路面扰动反馈的最优控制器。该控制器在传统系统状态反馈最优控制的基础上引入扰动反馈项,并通过粒子群算法优化加权系数,同时采用直线电机作为作动器。考虑...针对现有主动悬架在应用最优控制时缺乏路面扰动识别内容的问题,提出一种识别路面扰动反馈的最优控制器。该控制器在传统系统状态反馈最优控制的基础上引入扰动反馈项,并通过粒子群算法优化加权系数,同时采用直线电机作为作动器。考虑到路面不平度与系统状态响应获取存在先后顺序,采用开环带有外部输入的非线性自回归(Nonlinear Auto-regressive Model with Exogenous Inputs,NARX)神经网络预测与逆模型相结合的方法来识别路面不平度。神经网络离线训练在线识别,识别模块实时将结果传输给控制器。在整车模型上对控制策略进行仿真。结果表明,粒子群优化使平顺性指标显著改善;采用的路面识别方法可有效提高识别的精确性;与不识别扰动控制相比,本策略可有效降低悬架动挠度的恶化,并改善整体控制效果。展开更多
Measuring the complex permittivity of ultrathin,flexible materials with a high loss tangent poses a substantial challenge with precision using conventional methods,and verifying the accuracy of test results remains di...Measuring the complex permittivity of ultrathin,flexible materials with a high loss tangent poses a substantial challenge with precision using conventional methods,and verifying the accuracy of test results remains difficult.In this study,we introduce a methodology based on a back-propagation artificial neural network(ANN)to extract the complex permittivity of paper-based composites(PBCs).PBCs are ultrathin and flexible materials exhibiting considerable complex permittivity and dielectric loss tangent.Given the absence of mature measurement methods for PBCs and a lack of sufficient data for ANN training,a mapping relationship is initially established between the complex permittivity of honeycomb-structured microwave-absorbing materials(HMAMs,composed of PBCs)and that of PBCs using simulated data.Leveraging the ANN model,the complex permittivity of PBCs can be extracted from that of HMAMs obtained using standard measurement.Subsequently,two published methods are cited to illustrate the accuracy and advancement of the results obtained using the proposed approach.Additionally,specific error analysis is conducted,attributing discrepancies to the conductivity of PBCs,the homogenization of HMAMs,and differences between the simulation model and actual objects.Finally,the proposed method is applied to optimize the cell length parameters of HMAMs for enhanced absorption performance.The conclusion discusses further improvements and areas for extended research.展开更多
A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward contr...A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.展开更多
To rapidly model the gravity field near elongated asteroids,an intelligent inversion method using Hopfield neural networks(HNNs)is proposed to estimate on-orbit simplified model parameters.First,based on a rotating ma...To rapidly model the gravity field near elongated asteroids,an intelligent inversion method using Hopfield neural networks(HNNs)is proposed to estimate on-orbit simplified model parameters.First,based on a rotating mass dipole model,the gravitational field of asteroids is characterized using a few parameters.To solve all the parameters of this simplified model,a stepped parameter estimation model is constructed based on different gravity field models.Second,to overcome linearization difficulties caused by the coupling of the parameters to be estimated and the system state,a dynamic parameter linearization technique is proposed such that all terms except the parameter terms are known or available.Moreover,the Lyapunov function of the HNNs is matched to the problem of minimizing parameter estimation errors.Equilibrium values of the Lyapunov function areused as estimated values.The proposed method is applied to natural elongated asteroids 216 Kleopatra,951 Gaspra,and 433 Eros.Simulation results indicate that this method can estimate the simplified model parameters rapidly,and that the estimated simplified model provides a good approximation of the gravity field of elongated asteroids.展开更多
基金Tianjin Natural Science Foundation !983602011National 863/CIMS Research Foundation !863-511-945-010
文摘General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neural network inverse adaptive controller is used. We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence, and then through constructing the pseudo-plant, a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system. The simulation results show the validity of this scheme.
文摘One of the most important problems in robot kinematics and control is, finding the solution of Inverse Kinematics. Inverse kinematics computation has been one of the main problems in robotics research. As the Complexity of robot increases, obtaining the inverse kinematics is difficult and computationally expensive. Traditional methods such as geometric, iterative and algebraic are inadequate if the joint structure of the manipulator is more complex. As alternative approaches, neural networks and optimal search methods have been widely used for inverse kinematics modeling and control in robotics This paper proposes neural network architecture that consists of 6 sub-neural networks to solve the inverse kinematics problem for robotics manipulators with 2 or higher degrees of freedom. The neural networks utilized are multi-layered perceptron (MLP) with a back-propagation training algorithm. This approach will reduce the complexity of the algorithm and calculation (matrix inversion) faced when using the Inverse Geometric Models implementation (IGM) in robotics. The obtained results are presented and analyzed in order to prove the efficiency of the proposed approach.
文摘Adaptive inverse control system can improve the performance of turbo decoding,and modeling turbo decoder is one of the most important technologies. A neural network model for the inverse model of turbo decoding is proposed in this paper. Compared with linear filter with its revi-sion,the general relationship between the input and output of the inverse model of turbo decoding system can be established exactly by Nonlinear Auto-Regressive eXogeneous input (NARX) filter. Combined with linear inverse system,it has simpler structure and costs less computation,thus can satisfy the demand of real-time turbo decoding. Simulation results show that neural network in-verse control system can improve the performance of turbo decoding further than other linear con-trol system.
文摘Photonic inverse design concerns the problem of finding photonic structures with target optical properties.However,traditional methods based on optimization algorithms are time-consuming and computationally expensive.Recently,deep learning-based approaches have been developed to tackle the problem of inverse design efficiently.Although most of these neural network models have demonstrated high accuracy in different inverse design problems,no previous study has examined the potential effects under given constraints in nanomanufacturing.Additionally,the relative strength of different deep learning-based inverse design approaches has not been fully investigated.Here,we benchmark three commonly used deep learning models in inverse design:Tandem networks,Variational Auto-Encoders,and Generative Adversarial Networks.We provide detailed comparisons in terms of their accuracy,diversity,and robustness.We find that tandem networks and Variational Auto-Encoders give the best accuracy,while Generative Adversarial Networks lead to the most diverse predictions.Our findings could serve as a guideline for researchers to select the model that can best suit their design criteria and fabrication considerations.In addition,our code and data are publicly available,which could be used for future inverse design model development and benchmarking.
文摘The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters. In particular, the behavior of earth resembles the non- linearity applications. An efficient tool is needed for the interpretation of geophysical parameters to study the subsurface of the earth. Artificial Neural Networks (ANN) perform certain tasks if the structure of the network is modified accordingly for the purpose it has been used. The three most robust networks were taken and comparatively analyzed for their performance to choose the appropriate network. The single- layer feed-forward neural network with the back propagation algorithm is chosen as one of the well- suited networks after comparing the results. Initially, certain synthetic data sets of all three-layer curves have been taken tk^r training the network, and the network is validated by the field datasets collected from Tuticorin Coastal Region (78°7'30"E and 8°48'45"N), Tamil Nadu, India. The interpretation has been done successfully using the corresponding learning algorithm in the present study. With proper training of back propagation networks, it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data concerning the synthetic data trained earlier in the appropriate network. The network is trained with more Vertical Electrical Sounding (VES) data, and this trained network is demon- strated by the field data. Groundwater table depth also has been modeled.
文摘To increase predictive behaviors of neural network dynamic model, an experimental case study of a new approach to systems controller design is presented. The experiment is based on neural networks inverse plant model. Special rules for network training are developed. Such system is close to model-based predictive control, but needs much less computational resources. The approach advantages are shown by the control of laboratory complex plants.
基金funded by R&D Department of China National Petroleum Corporation(2022DQ0604-04)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03)the Science Research and Technology Development of PetroChina(2021DJ1206).
文摘Seismic impedance inversion is an important technique for structure identification and reservoir prediction.Model-based and data-driven impedance inversion are the commonly used inversion methods.In practice,the geophysical inversion problem is essentially an ill-posedness problem,which means that there are many solutions corresponding to the same seismic data.Therefore,regularization schemes,which can provide stable and unique inversion results to some extent,have been introduced into the objective function as constrain terms.Among them,given a low-frequency initial impedance model is the most commonly used regularization method,which can provide a smooth and stable solution.However,this model-based inversion method relies heavily on the initial model and the inversion result is band limited to the effective frequency bandwidth of seismic data,which cannot effectively improve the seismic vertical resolution and is difficult to be applied to complex structural regions.Therefore,we propose a data-driven approach for high-resolution impedance inversion based on the bidirectional long short-term memory recurrent neural network,which regards seismic data as time-series rather than image-like patches.Compared with the model-based inversion method,the data-driven approach provides higher resolution inversion results,which demonstrates the effectiveness of the data-driven method for recovering the high-frequency components.However,judging from the inversion results for characterization the spatial distribution of thin-layer sands,the accuracy of high-frequency components is difficult to guarantee.Therefore,we add the model constraint to the objective function to overcome the shortages of relying only on the data-driven schemes.First,constructing the supervisor1 based on the bidirectional long short-term memory recurrent neural network,which provides the predicted impedance with higher resolution.Then,convolution constraint as supervisor2 is introduced into the objective function to guarantee the reliability and accuracy of the inversion results,which makes the synthetic seismic data obtained from the inversion result consistent with the input data.Finally,we test the proposed scheme based on the synthetic and field seismic data.Compared to model-based and purely data-driven impedance inversion methods,the proposed approach provides more accurate and reliable inversion results while with higher vertical resolution and better spatial continuity.The inversion results accurately characterize the spatial distribution relationship of thin sands.The model tests demonstrate that the model-constrained and data-driven impedance inversion scheme can effectively improve the thin-layer structure characterization based on the seismic data.Moreover,tests on the oil field data indicate the practicality and adaptability of the proposed method.
文摘针对现有主动悬架在应用最优控制时缺乏路面扰动识别内容的问题,提出一种识别路面扰动反馈的最优控制器。该控制器在传统系统状态反馈最优控制的基础上引入扰动反馈项,并通过粒子群算法优化加权系数,同时采用直线电机作为作动器。考虑到路面不平度与系统状态响应获取存在先后顺序,采用开环带有外部输入的非线性自回归(Nonlinear Auto-regressive Model with Exogenous Inputs,NARX)神经网络预测与逆模型相结合的方法来识别路面不平度。神经网络离线训练在线识别,识别模块实时将结果传输给控制器。在整车模型上对控制策略进行仿真。结果表明,粒子群优化使平顺性指标显著改善;采用的路面识别方法可有效提高识别的精确性;与不识别扰动控制相比,本策略可有效降低悬架动挠度的恶化,并改善整体控制效果。
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB3700104).
文摘Measuring the complex permittivity of ultrathin,flexible materials with a high loss tangent poses a substantial challenge with precision using conventional methods,and verifying the accuracy of test results remains difficult.In this study,we introduce a methodology based on a back-propagation artificial neural network(ANN)to extract the complex permittivity of paper-based composites(PBCs).PBCs are ultrathin and flexible materials exhibiting considerable complex permittivity and dielectric loss tangent.Given the absence of mature measurement methods for PBCs and a lack of sufficient data for ANN training,a mapping relationship is initially established between the complex permittivity of honeycomb-structured microwave-absorbing materials(HMAMs,composed of PBCs)and that of PBCs using simulated data.Leveraging the ANN model,the complex permittivity of PBCs can be extracted from that of HMAMs obtained using standard measurement.Subsequently,two published methods are cited to illustrate the accuracy and advancement of the results obtained using the proposed approach.Additionally,specific error analysis is conducted,attributing discrepancies to the conductivity of PBCs,the homogenization of HMAMs,and differences between the simulation model and actual objects.Finally,the proposed method is applied to optimize the cell length parameters of HMAMs for enhanced absorption performance.The conclusion discusses further improvements and areas for extended research.
基金National Natural Science Foundation of China(Nos.62171285,61971120 and 62327807)。
文摘A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.
基金supported by the National Natural Science Foundation of China(No.12102177)the Natural Science Foundation of Jiangsu Province(No.BK20220130).
文摘To rapidly model the gravity field near elongated asteroids,an intelligent inversion method using Hopfield neural networks(HNNs)is proposed to estimate on-orbit simplified model parameters.First,based on a rotating mass dipole model,the gravitational field of asteroids is characterized using a few parameters.To solve all the parameters of this simplified model,a stepped parameter estimation model is constructed based on different gravity field models.Second,to overcome linearization difficulties caused by the coupling of the parameters to be estimated and the system state,a dynamic parameter linearization technique is proposed such that all terms except the parameter terms are known or available.Moreover,the Lyapunov function of the HNNs is matched to the problem of minimizing parameter estimation errors.Equilibrium values of the Lyapunov function areused as estimated values.The proposed method is applied to natural elongated asteroids 216 Kleopatra,951 Gaspra,and 433 Eros.Simulation results indicate that this method can estimate the simplified model parameters rapidly,and that the estimated simplified model provides a good approximation of the gravity field of elongated asteroids.