期刊文献+
共找到280篇文章
< 1 2 14 >
每页显示 20 50 100
Neural Network inverse Adaptive Controller Based on Davidon Least Square 被引量:2
1
作者 Chen, Zengqiang Lu, Zhao Yuan, Zhuzhi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期47-52,共6页
General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neu... General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neural network inverse adaptive controller is used. We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence, and then through constructing the pseudo-plant, a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system. The simulation results show the validity of this scheme. 展开更多
关键词 ALGORITHMS Backpropagation Convergence of numerical methods Feedforward neural networks inverse problems Least squares approximations Mathematical models Multilayer neural networks
下载PDF
Applying Neural Network Architecture for Inverse Kinematics Problem in Robotics 被引量:5
2
作者 Bassam Daya Shadi Khawandi Mohamed Akoum 《Journal of Software Engineering and Applications》 2010年第3期230-239,共10页
One of the most important problems in robot kinematics and control is, finding the solution of Inverse Kinematics. Inverse kinematics computation has been one of the main problems in robotics research. As the Complexi... One of the most important problems in robot kinematics and control is, finding the solution of Inverse Kinematics. Inverse kinematics computation has been one of the main problems in robotics research. As the Complexity of robot increases, obtaining the inverse kinematics is difficult and computationally expensive. Traditional methods such as geometric, iterative and algebraic are inadequate if the joint structure of the manipulator is more complex. As alternative approaches, neural networks and optimal search methods have been widely used for inverse kinematics modeling and control in robotics This paper proposes neural network architecture that consists of 6 sub-neural networks to solve the inverse kinematics problem for robotics manipulators with 2 or higher degrees of freedom. The neural networks utilized are multi-layered perceptron (MLP) with a back-propagation training algorithm. This approach will reduce the complexity of the algorithm and calculation (matrix inversion) faced when using the Inverse Geometric Models implementation (IGM) in robotics. The obtained results are presented and analyzed in order to prove the efficiency of the proposed approach. 展开更多
关键词 inverse GEOMETRIC model neural Network Multi-Layered PERCEPTRON ROBOTIC System Arm
下载PDF
APPLICATION OF NEURAL NETWORK INVERSE CONTROL SYSTEM IN TURBO DECODING 被引量:3
3
作者 Dong Zhenghong Wang Yuanqin 《Journal of Electronics(China)》 2007年第1期27-31,共5页
Adaptive inverse control system can improve the performance of turbo decoding,and modeling turbo decoder is one of the most important technologies. A neural network model for the inverse model of turbo decoding is pro... Adaptive inverse control system can improve the performance of turbo decoding,and modeling turbo decoder is one of the most important technologies. A neural network model for the inverse model of turbo decoding is proposed in this paper. Compared with linear filter with its revi-sion,the general relationship between the input and output of the inverse model of turbo decoding system can be established exactly by Nonlinear Auto-Regressive eXogeneous input (NARX) filter. Combined with linear inverse system,it has simpler structure and costs less computation,thus can satisfy the demand of real-time turbo decoding. Simulation results show that neural network in-verse control system can improve the performance of turbo decoding further than other linear con-trol system. 展开更多
关键词 neural network Adaptive inverse control Decoding model Turbo codes
下载PDF
Benchmarking deep learning-based models on nanophotonic inverse design problems 被引量:8
4
作者 Taigao Ma Mustafa Tobah +1 位作者 Haozhu Wang L.Jay Guo 《Opto-Electronic Science》 2022年第1期37-51,共15页
Photonic inverse design concerns the problem of finding photonic structures with target optical properties.However,traditional methods based on optimization algorithms are time-consuming and computationally expensive.... Photonic inverse design concerns the problem of finding photonic structures with target optical properties.However,traditional methods based on optimization algorithms are time-consuming and computationally expensive.Recently,deep learning-based approaches have been developed to tackle the problem of inverse design efficiently.Although most of these neural network models have demonstrated high accuracy in different inverse design problems,no previous study has examined the potential effects under given constraints in nanomanufacturing.Additionally,the relative strength of different deep learning-based inverse design approaches has not been fully investigated.Here,we benchmark three commonly used deep learning models in inverse design:Tandem networks,Variational Auto-Encoders,and Generative Adversarial Networks.We provide detailed comparisons in terms of their accuracy,diversity,and robustness.We find that tandem networks and Variational Auto-Encoders give the best accuracy,while Generative Adversarial Networks lead to the most diverse predictions.Our findings could serve as a guideline for researchers to select the model that can best suit their design criteria and fabrication considerations.In addition,our code and data are publicly available,which could be used for future inverse design model development and benchmarking. 展开更多
关键词 inverse design PHOTONICS machine learning neural networks generative models
下载PDF
A robust behavior of Feed Forward Back propagation algorithm of Artificial Neural Networks in the application of vertical electrical sounding data inversion 被引量:9
5
作者 Y.Srinivas A.Stanley Raj +2 位作者 D.Hudson Oliver D.Muthuraj N.Chandrasekar 《Geoscience Frontiers》 SCIE CAS 2012年第5期729-736,共8页
The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters. In particular, the behavior of earth resembles the non- linearity applications. An eff... The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters. In particular, the behavior of earth resembles the non- linearity applications. An efficient tool is needed for the interpretation of geophysical parameters to study the subsurface of the earth. Artificial Neural Networks (ANN) perform certain tasks if the structure of the network is modified accordingly for the purpose it has been used. The three most robust networks were taken and comparatively analyzed for their performance to choose the appropriate network. The single- layer feed-forward neural network with the back propagation algorithm is chosen as one of the well- suited networks after comparing the results. Initially, certain synthetic data sets of all three-layer curves have been taken tk^r training the network, and the network is validated by the field datasets collected from Tuticorin Coastal Region (78°7'30"E and 8°48'45"N), Tamil Nadu, India. The interpretation has been done successfully using the corresponding learning algorithm in the present study. With proper training of back propagation networks, it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data concerning the synthetic data trained earlier in the appropriate network. The network is trained with more Vertical Electrical Sounding (VES) data, and this trained network is demon- strated by the field data. Groundwater table depth also has been modeled. 展开更多
关键词 Artificial neural networks(ANN) Resistivity inversion coastal aquifer parameters Layer model
下载PDF
Predictive Inverse Neurocontrol:an experimental case study
6
作者 Konstantin Zmeu Boris Notkin +2 位作者 李胜波 Vyacheslav Stepaniuk Pavel Dyachenko 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第1期109-112,共4页
To increase predictive behaviors of neural network dynamic model, an experimental case study of a new approach to systems controller design is presented. The experiment is based on neural networks inverse plant model.... To increase predictive behaviors of neural network dynamic model, an experimental case study of a new approach to systems controller design is presented. The experiment is based on neural networks inverse plant model. Special rules for network training are developed. Such system is close to model-based predictive control, but needs much less computational resources. The approach advantages are shown by the control of laboratory complex plants. 展开更多
关键词 predictive control inverse control neural networks inverse plant model
下载PDF
Model-constrained and data-driven double-supervision acoustic impedance inversion
7
作者 Dong-Feng Zhao Na-Xia Yang +2 位作者 Jin-Liang Xiong Guo-Fa Li Shu-Wen Guo 《Petroleum Science》 SCIE EI CSCD 2023年第5期2809-2821,共13页
Seismic impedance inversion is an important technique for structure identification and reservoir prediction.Model-based and data-driven impedance inversion are the commonly used inversion methods.In practice,the geoph... Seismic impedance inversion is an important technique for structure identification and reservoir prediction.Model-based and data-driven impedance inversion are the commonly used inversion methods.In practice,the geophysical inversion problem is essentially an ill-posedness problem,which means that there are many solutions corresponding to the same seismic data.Therefore,regularization schemes,which can provide stable and unique inversion results to some extent,have been introduced into the objective function as constrain terms.Among them,given a low-frequency initial impedance model is the most commonly used regularization method,which can provide a smooth and stable solution.However,this model-based inversion method relies heavily on the initial model and the inversion result is band limited to the effective frequency bandwidth of seismic data,which cannot effectively improve the seismic vertical resolution and is difficult to be applied to complex structural regions.Therefore,we propose a data-driven approach for high-resolution impedance inversion based on the bidirectional long short-term memory recurrent neural network,which regards seismic data as time-series rather than image-like patches.Compared with the model-based inversion method,the data-driven approach provides higher resolution inversion results,which demonstrates the effectiveness of the data-driven method for recovering the high-frequency components.However,judging from the inversion results for characterization the spatial distribution of thin-layer sands,the accuracy of high-frequency components is difficult to guarantee.Therefore,we add the model constraint to the objective function to overcome the shortages of relying only on the data-driven schemes.First,constructing the supervisor1 based on the bidirectional long short-term memory recurrent neural network,which provides the predicted impedance with higher resolution.Then,convolution constraint as supervisor2 is introduced into the objective function to guarantee the reliability and accuracy of the inversion results,which makes the synthetic seismic data obtained from the inversion result consistent with the input data.Finally,we test the proposed scheme based on the synthetic and field seismic data.Compared to model-based and purely data-driven impedance inversion methods,the proposed approach provides more accurate and reliable inversion results while with higher vertical resolution and better spatial continuity.The inversion results accurately characterize the spatial distribution relationship of thin sands.The model tests demonstrate that the model-constrained and data-driven impedance inversion scheme can effectively improve the thin-layer structure characterization based on the seismic data.Moreover,tests on the oil field data indicate the practicality and adaptability of the proposed method. 展开更多
关键词 Acoustic impedance inversion model constraints Double supervision BiLSTM neural network Reservoir structure characterization
下载PDF
一种航天器在轨环境下结构变形的反演方法
8
作者 孙维 王丁 +5 位作者 罗文波 阎军 田阔 赵文彦 任晗 张鹏 《航天器环境工程》 CSCD 2024年第3期290-295,共6页
为实现航天器在轨结构变形高效计算,提出一种基于神经网络的结构变形反演方法:借助有限元分析法获得结构在不同温度载荷作用下的变形分布特征,并利用获取的数据对输入和输出间神经网络进行训练,获取高精度的代理模型。利用该模型,可以... 为实现航天器在轨结构变形高效计算,提出一种基于神经网络的结构变形反演方法:借助有限元分析法获得结构在不同温度载荷作用下的变形分布特征,并利用获取的数据对输入和输出间神经网络进行训练,获取高精度的代理模型。利用该模型,可以在轨测量的温度作为输入,实现对航天器结构全场变形的快速反演;可通过引入合适参数的高斯噪声,增强神经网络对于输入误差的适应能力;可用改进的连接权值分析方法,给出确定传感器数量下,实现变形反演精度最高的结构温度测点的布局优化方案。综上,该反演方法具有精度高、实时性强、受输入误差影响小等优点,其应用对于提升遥感卫星的成像质量具有重要意义。 展开更多
关键词 航天器 结构变形 位移场反演 神经网络 代理模型
下载PDF
基于实测数据融合的堆芯物理模型反演优化方法及工业验证研究 被引量:1
9
作者 郭林 张凯 +1 位作者 万承辉 吴宏春 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第7期1432-1439,共8页
由于堆芯运行过程中的组件辐照生长、冷却剂高速冲击等因素,燃料组件不可避免地会出现弯曲现象。但机组运行期间无法直接测量燃料组件弯曲状态,导致数值模拟采用的堆芯物理模型与真实堆芯状态之间存在差异,直观上表现为堆芯功率分布的... 由于堆芯运行过程中的组件辐照生长、冷却剂高速冲击等因素,燃料组件不可避免地会出现弯曲现象。但机组运行期间无法直接测量燃料组件弯曲状态,导致数值模拟采用的堆芯物理模型与真实堆芯状态之间存在差异,直观上表现为堆芯功率分布的计算值与实测值存在显著误差。为了提高数值模拟精度,本文开展了基于实测数据融合的堆芯物理模型反演优化方法研究:采用人工神经网络算法,通过大量样本训练建立堆芯物理模型与实测数据物理场之间的显式函数关系;基于三维变分算法和实测数据物理场,建立物理模型反演优化代价函数,通过实测数据反演优化得到与真实状态更为接近的堆芯物理模型。为了实现方法验证,本文利用国内某商用压水堆核电厂的功率分布实测数据对堆芯燃料组件弯曲实现了反演优化。数值结果表明:采用反演优化得到的堆芯物理模型,可将堆芯功率分布计算误差的最大值由13.4%降至7.7%,显著提升了堆芯数值模拟结果的精度。因此,本文提出的基于实测数据融合的堆芯物理模型反演优化方法能够显著提高堆芯数值模拟的精度,在核反应堆数字孪生技术研发中具有重要的应用价值。 展开更多
关键词 实测数据融合 模型反演优化 三维变分算法 人工神经网络算法
下载PDF
基于神经网络逆控制的TBCC发动机多变量限制管理
10
作者 于兵强 张永亮 +2 位作者 聂聆聪 黄金泉 鲁峰 《推进技术》 EI CAS CSCD 北大核心 2024年第12期74-84,共11页
涡轮基组合循环(TBCC)发动机的控制系统既需要对执行机构协同控制以充分发挥每个工作模态的性能优势,又需要实现限制管理功能以保证发动机在安全条件下工作。本文通过分析串联式TBCC发动机流路计算过程,建立其性能动态模型,提出了一种... 涡轮基组合循环(TBCC)发动机的控制系统既需要对执行机构协同控制以充分发挥每个工作模态的性能优势,又需要实现限制管理功能以保证发动机在安全条件下工作。本文通过分析串联式TBCC发动机流路计算过程,建立其性能动态模型,提出了一种基于神经网络预测反馈与逆控制的TBCC发动机多变量主控回路,其在单一模式阶跃响应超调小于3%,模态转换推力流量波动小于4%。在多变量控制架构中引入了限制管理策略,通过对比分析基于模型预测控制的多变量约束方法,仿真表明本文提出方法在考虑多变量耦合基础上,在过渡态和模态转换过程中满足超限幅度小于0.2%和0.07%,能有效实现限制管理,且结构简单,易于实现。 展开更多
关键词 组合发动机 限制保护 Min-Max切换 模型预测控制 神经网络逆控制
下载PDF
基于BP神经网络的高密度电法在水库清淤扩容坝后排泥区围堰探测中的应用
11
作者 张喆 马福恒 霍吉祥 《水电能源科学》 北大核心 2024年第5期174-178,共5页
高密度电法具有采集数据量大、效率高、反演信息丰富等特点,在水库大坝病险隐患探测领域得到广泛应用。目前,使用基于最小二乘法的反演容易受地电数据局部极值影响,使得探测到的病害位置和规模不准确。对此,通过建立不同参数值、形态大... 高密度电法具有采集数据量大、效率高、反演信息丰富等特点,在水库大坝病险隐患探测领域得到广泛应用。目前,使用基于最小二乘法的反演容易受地电数据局部极值影响,使得探测到的病害位置和规模不准确。对此,通过建立不同参数值、形态大小及位置分布的异常体正演模型,将模型数据作为训练样本,以此构建基于BP神经网络的高密度电法反演模型;将训练完成的反演模型应用于水库清淤扩容坝后排泥区围堰的高密度电法探测结果分析中。结果表明,所提方法能够减小局部电流极值引起的屏蔽作用,缩小隐患排查范围,提高了高密度电法受高阻屏蔽影响下分辨隐患的准确性和反演精度,可对物探资料作出更为精确的解释。 展开更多
关键词 高密度电法 BP神经网络 反演模型 清淤围堰 隐患探测
下载PDF
基于物理信息神经网络的甲烷无氧芳构化反应的正反问题 被引量:1
12
作者 李依梦 陈运全 +2 位作者 何畅 张冰剑 陈清林 《化工进展》 EI CAS CSCD 北大核心 2024年第9期4817-4823,共7页
解决化学反应动力学建模的正问题和反问题研究有助于更深地理解反应机理,降低实验成本。本研究以一维填充床甲烷无氧芳构化(MDA)反应为案例,利用物理信息神经网络(PINN)将化学反应机理方程耦合到损失函数中,以此构建动力学建模和参数反... 解决化学反应动力学建模的正问题和反问题研究有助于更深地理解反应机理,降低实验成本。本研究以一维填充床甲烷无氧芳构化(MDA)反应为案例,利用物理信息神经网络(PINN)将化学反应机理方程耦合到损失函数中,以此构建动力学建模和参数反演的求解框架。首先,通过正问题求解确定最佳神经网络超参数方案,结果表明构建的正问题模型在求解MDA反应动力学方程上有良好的预测性能,训练和外推的L2误差分别为0.19%和0.95%。在此基础上,在0、0.1%、0.3%高斯噪声下,利用标签数据反演反应速率常数,训练得到的预测值与真实值相对误差均在0.5%内,体现出了反问题模型在低质量数据下进行未知动力学参数反演的能力。 展开更多
关键词 甲烷无氧芳构化 物理信息神经网络 反应动力学模型 反问题
下载PDF
主动悬架识别路面扰动反馈最优控制策略研究
13
作者 吕文博 赵又群 《噪声与振动控制》 CSCD 北大核心 2024年第6期191-197,共7页
针对现有主动悬架在应用最优控制时缺乏路面扰动识别内容的问题,提出一种识别路面扰动反馈的最优控制器。该控制器在传统系统状态反馈最优控制的基础上引入扰动反馈项,并通过粒子群算法优化加权系数,同时采用直线电机作为作动器。考虑... 针对现有主动悬架在应用最优控制时缺乏路面扰动识别内容的问题,提出一种识别路面扰动反馈的最优控制器。该控制器在传统系统状态反馈最优控制的基础上引入扰动反馈项,并通过粒子群算法优化加权系数,同时采用直线电机作为作动器。考虑到路面不平度与系统状态响应获取存在先后顺序,采用开环带有外部输入的非线性自回归(Nonlinear Auto-regressive Model with Exogenous Inputs,NARX)神经网络预测与逆模型相结合的方法来识别路面不平度。神经网络离线训练在线识别,识别模块实时将结果传输给控制器。在整车模型上对控制策略进行仿真。结果表明,粒子群优化使平顺性指标显著改善;采用的路面识别方法可有效提高识别的精确性;与不识别扰动控制相比,本策略可有效降低悬架动挠度的恶化,并改善整体控制效果。 展开更多
关键词 振动与波 主动悬架 最优控制 粒子群算法 路面不平度识别 NARX神经网络 逆模型
下载PDF
A novel method for extracting and optimizing the complex permittivity of paper-based composites based on an artificial neural network model
14
作者 XIA ChenBin SHEN JunYi +6 位作者 LIAO ShaoWei WANG Yi HUANG ZhengSheng XUE Quan TANG Min LONG Jin HU Jian 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第10期3190-3204,共15页
Measuring the complex permittivity of ultrathin,flexible materials with a high loss tangent poses a substantial challenge with precision using conventional methods,and verifying the accuracy of test results remains di... Measuring the complex permittivity of ultrathin,flexible materials with a high loss tangent poses a substantial challenge with precision using conventional methods,and verifying the accuracy of test results remains difficult.In this study,we introduce a methodology based on a back-propagation artificial neural network(ANN)to extract the complex permittivity of paper-based composites(PBCs).PBCs are ultrathin and flexible materials exhibiting considerable complex permittivity and dielectric loss tangent.Given the absence of mature measurement methods for PBCs and a lack of sufficient data for ANN training,a mapping relationship is initially established between the complex permittivity of honeycomb-structured microwave-absorbing materials(HMAMs,composed of PBCs)and that of PBCs using simulated data.Leveraging the ANN model,the complex permittivity of PBCs can be extracted from that of HMAMs obtained using standard measurement.Subsequently,two published methods are cited to illustrate the accuracy and advancement of the results obtained using the proposed approach.Additionally,specific error analysis is conducted,attributing discrepancies to the conductivity of PBCs,the homogenization of HMAMs,and differences between the simulation model and actual objects.Finally,the proposed method is applied to optimize the cell length parameters of HMAMs for enhanced absorption performance.The conclusion discusses further improvements and areas for extended research. 展开更多
关键词 paper-based composite HONEYCOMB complex permittivity artificial neural networks inverse modeling
原文传递
A Hybrid Compensation Scheme for the Input Rate-Dependent Hysteresis of the Piezoelectric Ceramic Actuators
15
作者 DONG Ruili TAN Yonghong +1 位作者 HOU Jiajia ZHENG Bangsheng 《Journal of Donghua University(English Edition)》 CAS 2024年第4期436-446,共11页
A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward contr... A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system. 展开更多
关键词 hybrid control input rate-dependent hysteresis inverse model neural network piezoelectric ceramic actuator
下载PDF
On-board modeling of gravity fields of elongated asteroids using Hopfield neural networks 被引量:1
16
作者 Yingjie Zhao Hongwei Yang +1 位作者 Shuang Li Yirong Zhou 《Astrodynamics》 EI CSCD 2023年第1期101-114,共14页
To rapidly model the gravity field near elongated asteroids,an intelligent inversion method using Hopfield neural networks(HNNs)is proposed to estimate on-orbit simplified model parameters.First,based on a rotating ma... To rapidly model the gravity field near elongated asteroids,an intelligent inversion method using Hopfield neural networks(HNNs)is proposed to estimate on-orbit simplified model parameters.First,based on a rotating mass dipole model,the gravitational field of asteroids is characterized using a few parameters.To solve all the parameters of this simplified model,a stepped parameter estimation model is constructed based on different gravity field models.Second,to overcome linearization difficulties caused by the coupling of the parameters to be estimated and the system state,a dynamic parameter linearization technique is proposed such that all terms except the parameter terms are known or available.Moreover,the Lyapunov function of the HNNs is matched to the problem of minimizing parameter estimation errors.Equilibrium values of the Lyapunov function areused as estimated values.The proposed method is applied to natural elongated asteroids 216 Kleopatra,951 Gaspra,and 433 Eros.Simulation results indicate that this method can estimate the simplified model parameters rapidly,and that the estimated simplified model provides a good approximation of the gravity field of elongated asteroids. 展开更多
关键词 elongated asteroids simplified model Hopfield neural networks(HNNs) on-board learning gravity inversion
原文传递
基于分治方法的声纹识别系统模型反演
17
作者 张骏飞 张雄伟 孙蒙 《信息安全研究》 CSCD 北大核心 2024年第2期130-138,共9页
模型反演越来越引起人们对隐私的关注,它可以从模型中重构私有隐私数据,从而引发更加严重的信息安全问题.针对语音信息安全,首次尝试了一个新的模型反演应用:从声纹识别系统中提取说话人语音的语谱图特征.为了减少反演过程中的复杂度及... 模型反演越来越引起人们对隐私的关注,它可以从模型中重构私有隐私数据,从而引发更加严重的信息安全问题.针对语音信息安全,首次尝试了一个新的模型反演应用:从声纹识别系统中提取说话人语音的语谱图特征.为了减少反演过程中的复杂度及误差,采用分治法的思想逐层反演,并通过循环一致性的有效监督,成功重构与说话人身份一致的反演样本;另外,由于语音的特殊性,模型特征层已包含丰富的说话人信息,进一步减弱语义信息相似后,改进的方法显著提高了反演样本的识别准确率,表明反演所得语谱图中已含有有效表示说话人身份的信息.实验结果证明了模型反演在语谱图上的可行性,突出了提取此类语音特征信息的深度网络模型所带来的隐私信息泄露风险. 展开更多
关键词 模型反演 神经网络 声纹识别 语谱图 信息安全
下载PDF
神经网络类机理建模下的持续自学习控制
18
作者 谭天乐 张万超 +1 位作者 何永宁 周恒杰 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第5期885-894,共10页
针对未知、时变复杂动力学系统在基于模型的控制中的动态建模问题,本文采用前向全连接神经网络对动力学系统进行数据驱动下的非机理拟合建模.通过动态线性化和归一化/反归一化数据处理,基于前向传播算法,将神经网络的网络拓扑计算过程... 针对未知、时变复杂动力学系统在基于模型的控制中的动态建模问题,本文采用前向全连接神经网络对动力学系统进行数据驱动下的非机理拟合建模.通过动态线性化和归一化/反归一化数据处理,基于前向传播算法,将神经网络的网络拓扑计算过程转化成动力学系统机理模型的同构等价表达形式.与基于模型的预测与反演控制相结合,提出了神经网络类机理建模下的持续自学习控制方法,探索了神经网络在动力学系统建模与控制中的可解释性问题.以机械臂为控制对象的仿真结果表明,神经网络类机理模型与机理模型在形式上同构,在参数上近似或等价,可用于控制系统控制品质的定性、定量分析.持续自学习控制对非线性未知、时变复杂系统具有较好的动态适应能力. 展开更多
关键词 黑箱系统 时变系统 非机理建模 神经网络建模 同构等价表达 模型预测与反演控制 持续自学习控制 机械臂控制
下载PDF
遗传算法优化的BP神经网络模型在遥感水深反演中的应用
19
作者 陈洲杰 陈华建 盛君 《测绘与空间地理信息》 2024年第10期112-114,118,共4页
针对传统BP神经网络模型在遥感影像水深反演中存在的缺陷,本文引入主成分分析(PCA)与遗传算法(GA),构建新的GA-BP神经网络模型,该改进模型利用GA对BP神经网络模型的权值与阈值进行优化并将优化值作为BP神经网络模型初始值。将该改进模... 针对传统BP神经网络模型在遥感影像水深反演中存在的缺陷,本文引入主成分分析(PCA)与遗传算法(GA),构建新的GA-BP神经网络模型,该改进模型利用GA对BP神经网络模型的权值与阈值进行优化并将优化值作为BP神经网络模型初始值。将该改进模型用于遥感影像水深反演实验中,结果表明,较单一的BP神经网络模型,该改进模型的收敛速度具有较大提升,水深反演精度也更高。 展开更多
关键词 BP神经网络模型 主成分分析 遗传算法 水深反演 权值和阈值优化
下载PDF
基于高分遥感影像的总磷浓度反演研究
20
作者 吴欢欢 春兰 +3 位作者 王春晓 国巧真 刘晓娟 熊小青 《测绘与空间地理信息》 2024年第8期18-21,共4页
以定量遥感反演水质参数为目的,以天津市海河下游段为研究区,利用总磷实测水质数据和同期GF-2PMS 2遥感影像数据,建立两者的偏最小二乘回归模型、单隐含层神经网络模型、双隐含层神经网络模型及粒子群算法优化的双隐含层神经网络模型(DP... 以定量遥感反演水质参数为目的,以天津市海河下游段为研究区,利用总磷实测水质数据和同期GF-2PMS 2遥感影像数据,建立两者的偏最小二乘回归模型、单隐含层神经网络模型、双隐含层神经网络模型及粒子群算法优化的双隐含层神经网络模型(DP-BPNN模型)。通过决定系数、平均绝对误差、均方根误差进行精度检验,选出研究区水体适用的总磷浓度的反演模型。结果表明:与偏最小二乘模型精度对比,所建总磷反演模型精度提高了48%。 展开更多
关键词 神经网络模型 粒子群优化算法 总磷 GF-2遥感影像 海河
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部